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Abstract. We use a computationally-feasible formalization of concep-
tual blending as colimits of many-sorted first-order theories for present-
ing a concrete formal generation of the notion of topological group. This
represents a genuine extension of current work done in this direction.

Artificial Concept Invention based on the seminal cognitive mech-
anism of conceptual blending has obtained a central place within in-
telligent and creative systems’ research. We provide highly abstract
extensions of work done in this direction for the fundamental mathe-
matical notion of topological groups. Specifically, we start with two
basic notions belonging to topology and abstract algebra, and we de-
scribe recursively formal specifications in the Common Algebraic Spec-
ification Language (CASL). The notion of conceptual blending between
such conceptual spaces can be materialized computationally in the Het-
erogeneous Tool Set (HETS). The fundamental notion of topological
groups is explicitly generated through three different artificial specifica-
tions based on conceptual blending and conceptual identification, start-
ing with the concepts of continuous functions and mathematical groups
(described with minimal set-theoretical conditions).

Keywords: Artificial conceptual creation; Concept invention; Formal concep-
tual blending; Conceptual identification; Colimits; Topological groups.

1. Introduction

Latest advances in computational creativity, cognitive and computer sci-
ence continue enhancing our understanding about the way in which our minds
create mathematics at high levels of sophistication [6]. In particular, more
precise formalization of fundamental cognitive mechanisms for conceptual cre-
ation has been developed and tested in several mathematical domains [14, 10,
18, 11]. Among those basic cognitive abilities conceptual blending has shown
to be not only one of the most powerful, but also one of the most omnipresent
among mathematics [1, 7]. For instance, seminal notions of (algebraic) number
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theory, Fields and Galois theory and commutative algebra have been concep-
tually meta-generated (with a computational basis) in terms of a categorical
formalization of conceptual blending [10, 4, 11, 3].

More concretely, the blend of a ‘V’-shaped diagram between two input
mathematical concepts with a generic (base) concept is characterized by means
of categorical colimits. Now, such a colimit exists because mathematical con-
cepts are formalized in terms of many-sorted first-order theories with axiom-
preserving morphisms [10, §8.2]. Another basic metamathematical cognitive
mechanism commonly used during mathematical research is conceptual iden-
tification; i.e., the ability of (cognitively) interpreting two (abstract) concepts
as the same, with the purpose of simplifying inferential processes on the mind
[12, 13].

Research in this direction is also closely related with the development of
new forms of cognitively-inspired artificial intelligence on the domain of ab-
stract mathematical discovery/creation [10]., specifically, within the multidis-
ciplinary research program Artificial Mathematical Intelligence [10, §8.7.1].1

In the modern literature concerning formal (artificial) conceptual gener-
ation based on conceptual blending and metaphorical reasoning et al., an
special attention has been set to the study of algebraic and arithmetic no-
tions. On the other hand, concepts with a more topological and geometrical
nature represents a relatively unexplored field in this regard. So, we aim to
start to fill this gap presenting a detailed conceptual generation of the seminal
concept of topological group starting with the elementary notions of group,
continuous function (between topological spaces) and ‘perfect square’ topolog-
ical space. We will present the corresponding pseudo-specifications described
with the common algebraic specification language (CASL) [2] and implicitly
using the formalisms described by the Heterogeneous Tool Set (HETS) [15].
HETS is a suitable software because it provides specific tools for computing
formal colimits for the above formalization of concepts described above.

2. Conceptual Preliminaries

For the sake of completeness in the presentation, we recall the initial notions
that we will use as foundational bricks of our conceptual ‘building’.

First of all, a group (G, +, e) is simply a set equipped with a binary opera-
tion + and an outstanding element e ∈ G, such that e is the neutral element
with respect to +, + is associative and each element possesses a inverse.

Second, a topological space (X, T ) consists of a set X and a collection T of
subsets of X satisfying the following conditions: ∅, X ∈ T , T is closed under
finite intersections and arbitrary unions. So, a function f : X → Y between
topological spaces (X, TX) and (Y, TY ) is continuous if and only if for any

1www.ArtificialMathematicalIntelligence.com
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U ∈ TY , f−1(U) ∈ TX . In the case that X and Y are exactly the same
topological space, f is alternatively called a continuous endomorphism.

Third, a topological space (Z, TZ) is called a perfect square topological
space if and only if there exists another topological space (X, TX) such that
Z = X × X and TZ is exactly the product topology consisting of arbitrary
unions of finite intersections of Cartesian products of elements of Tx (all
viewed embedded in Z).

Fourth, a continuous binary operation (over a topological space (X, T ) is
a continuous function ⊕ : X ×X → X, where X ×X is assumed to have the
product topology.

Fifth, a topological group (G, +, e) is a group which is at the same time a
topological space such that the operations + and Addinv : G → G (sending
x→ −x) are continuous functions. If the continuity of the inverse function is
not required, then (G, +, e) is a pseudo topological group.

For a more detailed reading of the former concepts the interested reader
may consult [9] and [16].

3. Conceptual Generation of the Notion of Topological Group
in terms of Formal Conceptual Blending and Metaphorical

Reasoning

Due to the fact that we want to construct artificial specifications of mathe-
matical notions ‘from scratch’, we will describe along with the central axioms
of each of the concepts, the minimal set-theoretical information needed to be
able to do robust conceptual operations with them. Moreover, we present all
the pseudo-codes in the most natural and clear way possible, so that work-
ing mathematicians with little experience with CASL would understand the
essentials features of the mathematical structures involved.

3.1. Continuous Binary Operation.

In the following specifications we will generate the notion of continuous
binary operation as the formal blend between the notions of continuous func-
tions (between topological spaces) and perfect square topological space. We
use extra constants for some sorts, denoted with an additional ‘prime’ symbol
(e.g. A′), due to the fact that we need to be able to manipulate each sort as
a ‘set’ as well. Similarly, we will define a new constant for ‘simulating’ the
Cartesian product of a set with itselt, because CASL do not deal with Carte-
sian products between sorts as constants. The importance of this technical
trick can be better appreciated after reading completely each of the specifica-
tions. Due to the fact that we are showing different specifications and for the
sake of simplicity in the presentation we use ellipsis (‘· · · ’) in the pseudo-code
to indicate that already defined concepts should be specified again. Now,
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such technicalities did not appear so explicitly in daily mathematical research
because our minds do conceptual identifications almost automatically.

begin CASL

%% Continuous function between two topological spaces

spec ContFunc =
sorts Sets, A, TA, PA, B, TB, PB;

A, TA, PA, B, TB, PB < Sets;
TA < PA, TB < PB

%% A = domain of the function, TA = topology of A, PA =
powerset of A

%% B = codomain of B, TB = topology of B, PB = powerset of B
ops EmpSet, A’, TA’, PA’, B’, TB’, PB’ : Sets;

__ in __ : Sets × Sets
__ inter __ : Sets × Sets 7→ Sets
Uni__ : Sets
__ subset __ : Sets × Sets
f: A 7→ B
inversef: TB 7→ TA

%% Definition of A, TA and PA
preds ∀ a : Sets. a : A ⇔ a in A’

∀ x : Sets. x : TA ⇔ x in TA’
∀ y : Sets. y : PA ⇔ y in PA’
∀ e : Sets. ¬(e in EmpSet)
∀ z : Sets. z in PA’ ⇔ ∀ p : Sets. (p in z ⇒ p in

A’)
∀ x : Sets. x in TA’ ⇒ x in PA’
∀ r, s : Sets. ∀ q : Sets. (q in r inter s ⇔ q in

r ∧ q in s)
∀ a, b : Sets. (b in Uni a ⇔ exists c : Sets. b in

c ∧ c in a)
%% Specific axioms for a A as topological space

EmptySet in TA’
A’ in TA’
∀ a, b : TA. a inter b : TA
∀ c : TA. Uni c : TA

%% Definition of B, TB and PB
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∀ b : Sets. b : B ⇔ b in B’
∀ x : Sets. x : TB ⇔ x in TB’
∀ y : Sets. y : PB ⇔ y in PB’
∀ z : Sets. z in PB’ ⇔ ∀ b : Sets. (b in z ⇒ b in

B’)
∀ k : Sets. k in TB’ ⇒ k in PB

%% Specific axioms for a B as topological space
EmptySet in TB’
B’ in TB’
∀ a, b : TB. a inter b : TB
∀ c : TB. Uni c : TB

%% Inverse image of a set under a function
∀ q : TB. ∀ x : Sets.
x in inversef q ⇔ f(x) in q

%% Condition of continuity
∀ x : PB. (x : TB ⇒ inversef(x) in TA’)

end

%% Perfect square of a topological space

spec PerfSqTopSp =
sorts Sets, X, TX, PX, XX, TXX, PXX;

X, TX, PX, XX, TXX, PXX < Sets;
TX < PX; TXX < PXX;

ops EmpSet, X’, TX’, PX’, XX’, TXX’, PXX’ : Sets;
__ in __ : Sets × Sets;
__ subset __ : Sets × Sets;
__ inter __ : Sets × Sets → Sets
__ ordpair __ : Sets × Sets → Sets
__ prod __ : Sets × Sets → Sets
Uni : Sets → Sets

preds ∀ x : Sets. x : X ⇔ x in X’
∀ u : Sets. u : TX ⇔ u in TX’
∀ v : Sets. v : PX ⇔ v in PX’
∀ a : Sets. a : XX ⇔ a in XX’
∀ b : Sets. b : TXX ⇔ b in TXX’
∀ c : Sets. c : PXX ⇔ c in PXX’
∀ e : Sets. ¬(e in EmpSet)
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∀ z : Sets. z in PX’ ⇔ ∀ b : Sets. (b in z ⇒ b in
X’)

∀ d : Sets. d in TX’ ⇒ d in PX’
∀ r, s : Sets. ∀ q: Sets. (q in r inter s ⇔ q in r

∧ q in s)
∀ a, b : Sets. (b in Uni a ⇔ ∃ c : Sets. b in c ∧

c in a)
∀ a, b : Sets. a subset b ⇔ (∀ u : Sets. u in a ⇒

u in b)
%% Specific axioms for a X as topological space

EmpSet in TX’
X’ in TX’
∀ a, b : TX. a inter b :TX
∀ c : TX. Uni c :TX

%% Specific axioms for XX as topological space
EmpSet in TXX’
XX’ in TXX’
∀ a, b : TXX. a inter b : TXX
∀ c : TXX. Uni c : TXX

%% Defining ordpair
∀ u, x, y : Sets. u in x ordpar y ⇔ ((∀ t: Sets. t

in u ⇔ (t = x)) ∨ (∀ s : Sets. s in u ⇔ (s =
x ∨ s = y)))

%% Definying prod
∀ V, W : Sets.
∀ a : Sets. a in V prod W ⇔ ∃ v : V. ∃ w : W. a =

v ordpair w
%% Specifying the fact that XX is X prod X

∀ x : Sets. x in XX ⇔ (∃ s,t: X. x = s ordpair t)
%% TXX is the product topology

∀ z : Sets. z :TXX ⇔ (∀ w:Sets. w in z. ⇔ (∃ u,v :
Sets. (u in TX ∧ v in TX ∧ w in u prod v ∧ u
prod v subset z)))

end

%% Contiunuous binary operation

spec Generic =
sorts GSets, U, UU, TU, TUU, PU, PUU,
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ops GEmpt, U’, UU’, TU’, TUU’, PU’, PUU’: GSets
__ in __ : GSets × GSets;
__ subset __ : GSets × GSets;
__ inter __ : GSets × GSets 7→ GSets
Uni : GSets 7→ GSets

end

view I1:
Generic to PerfSqTopSp
GSets 7→ Sets, U 7→ X, UU 7→ XX, TUU 7→ TXX, PU 7→ PX, PUU

7→ PXX, U’ 7→ X’, UU’ 7→ XX’, TUU’ 7→ TXX’, PU’ 7→ PX’,
PUU’ 7→ PXX’, GEmpt 7→ EmpSet, __ in __ 7→ __ in __, __
subset __ 7→ __ subset __, __ inter __ 7→ __ inter __,
Uni 7→ Uni

end

view I2:
Generic to ContFunc
GSets 7→ Sets, U 7→ B, TU 7→ TB, PU 7→ PB, UU 7→ A, TUU 7→

TA, PUU 7→ PA, U’ 7→ B’, TU’ 7→ TB’,
PU’ 7→ PB’, UU’ 7→ A’, TUU’ 7→ TA’, PUU’ 7→ PA’, GEmpt 7→

EmpSet, __ in __ 7→ __ in __, __ subset __ 7→ __ subset
__, __ inter __ 7→ __ inter __, Uni 7→ Uni

end

spec Colimit = combine I1, I2

By computing the corresponding blend (i.e. colimit), we obtain a speci-
fication of the notion of continuous binary operation. So, after doing some
improvements in the presentation (e.g. updating names of sorts), one essen-
tially obtains an specification like the following:

logic CASL

spec ContBinOp =
sorts GSets, U, UU, TU, TUU, PU, PUU;

U, UU, TU, TUU, PU, PUU < GSets;
TU < PU, TUU < PUU

ops GEmpt, U’, UU’, TU’, TUU’, PU’, PUU’: GSets
__ in __ : GSets × GSets;
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__ subset __ : GSets × GSets;
__ inter __ : GSets × GSets 7→ GSets
Uni : GSets 7→ GSets
__ ordpair __ : GSets × GSets 7→ GSets
__ prod __ : GSets × GSets 7→ GSets
f : UU 7→ U
inversef : TU 7→ TUU;

Preds ∀ x : GSets. x : U ⇔ x in U’
∀ w : GSets. w : TU ⇔ w in TU’
∀ a : GSets. a : PU ⇔ a in PU’
∀ a : GSets. a : PUU ⇔ a in PUU’
∀ w : GSets. w : TUU ⇔ w in TUU’
∀ y : GSets. ¬(y in EmpSet)
∀ z : GSets. z in PU’ ⇔ ∀ b : GSets. (b in z ⇒ b

in U’)
∀ a : GSets. a in TU’ ⇒ a in PU’
∀ q, r, s : GSets. (q in r inter s ⇔ q in r ∧ q in

s)
∀ a, b : GSets. (b in Uni a ⇔ ∃ c : GSets. b in c

∧ c in a)
∀ a, b : GSets. a subset b ⇔ ∀ u : GSets. u in a

⇒ u in b)
%% Specific axioms for U as topological space

GEmpSet in TU’
U’ in TU’
∀ a, b : TU. a inter b : TU
∀ c : TU. Uni c : TU

%% Specific axioms for UU as topological space
GEmpSet in TUU’
UU’ in TUU’
∀ a, b : TUU. a inter b : TUU
∀ c : TUU. Uni c : TUU

%% Defining ordpair
∀ u, x, y : GSets. u in x ordpar y ⇔(∀ t : GSets.

t in u ⇔ (t = x)) ∨ ∀ s : GSets. s in u ⇔ (s =
x ∨ s = y)))

%% Defining prod
∀ V, W : GSets.
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∀ a : GSets. a in V prod W ⇔ ∃ v : V. ∃ w : W. a =
v ordpair w

%% Specifying the fact that UU is U prod U
∀ x : GSets. x in UU ⇔ ∃ s, t : U. x = s ordpair t

%% TUU is the product topology
∀ z : GSets. z : TUU ⇔ ∀ w : GSets. w in z. ⇔ ∃ u,

v : GSets. (u in TU ∧ v in TU ∧ w in u prod v
∧ u prod v subset z)))

%% Inverse image of a set under a function
∀ q : TUU. ∀ x : GSets. x in inversef(q) ⇔ f(x) in

q
%% Condition of continuity

∀ x : PU. x : TU ⇒ inversef(x) in TUU’
end

3.2. Quasi-topological Groups.

Let us combine the latter blended concept (i.e. continuous binary opera-
tions) with (an enriched form of) the notion of group to generate the concept
of quasi-topological groups.
Login CASL

spec ContBinOp =

· · ·

end

%% (Enriched) group

spec EnrGroup =
sorts Sets, L, LS, L < Sets, LS < Sets
ops 0 : L; L’, LS’ : Sets

__ in __ : Sets × Sets;
__ ordpair __ : Sets × Sets → Sets
__ prod __ : Sets × Sets → Sets
__ + __ : L × L → L
Addinv : L → L
++ : LS → L

%% L’ and LS’ simulates L and LS
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preds ∀ x : Sets. x: L ⇔ x in L’
∀ w : Sets. w: LS ⇔ w in LS’

%% Axioms of a Group.
∀ x, y, z : L. (x + y) + z = x + (y + z)
∀ x : L. x + 0 = x ∧ 0 + x = x
∀ x : L. Addinv(x) + x = 0 ∧ x + Addinv(x) = 0

%% Defining ordpair
∀ u, x, y : Sets. u in x ordpar y ⇔ ((∀ t : Sets.

t in u ⇔ (t = x)) ∨ (∀ s : Sets. s in u ⇔ (s =
x ∨ s = y)))

%% Defining prod
∀ V, W : Sets. ∀ a : Sets. a in V prod W ⇔ ∃ v : V

. ∃ w: W. a = v ordpair w
%% Specifying the fact that LS is the cartesian product of L

with L
∀ x, y :Sets. x ordpair y in LS’ ⇔ x in L’ ∧ y in

L’
%% ++ simulates +

∀ a, b : Sets. if a : L ∧ b : L. a + b = ++(a
ordpair b)

end

%% Quasi-topological group as a blend of ComBinOp and EnrGroup
spec Generic =

sorts Sets, G, GS
ops __ in __ : GS → G

__ ordpair __ : Sets × Sets → Sets
__ prod __ : Sets × Sets → Sets
Addinv : L → L
++ : LS → L

end

view I1:
Generic to EnrGroup
Sets → Sets, G 7→ L, GS → LS, ++ → ++

end

view I2:
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Generic to ContBinOp
Sets 7→ GSets, __ in __ 7→ __ in __, __ ordpair __ 7→ __

ordpair __, __ prod __ 7→ __ prod __, ++ __ 7→ f
end

spec Colimit = combine I1, I2

After doing the computation of the colimit we obtain the concept of quasi-
topological group.

spec QuasiTopGr =
sorts Sets, G, TG, PG, GS, TGS, PGS;

G, TG, PG, GS, TGS, PGS < Sets;
TG < PG, TGS < PGS;

ops Empty, G’, TG’, PG’, GS’, TGS’, PGS’;
__ ordpair __ : Sets × Sets → Sets
__ prod __ : Sets × Sets → Sets
__ + __ : G × G → G
__ in __ : Sets × Sets
++ : GS → G
funcinvplusplus : TG → TGS
Addinv : G → G

%% Axioms for G being a group
preds ∀ x, y, z : G. (x + y) + z = x + (y + z)

∀ x : G. x + 0 = x ∧ 0 + x = x
∀ x : G. Addinv(x) + x = 0 ∧ x + Addinv(x) = 0

%% Axioms for GS being the perfect square topological space
∀ g : Sets. g: G ⇔ g in G’
∀ h : Sets. h : TG ⇔ h in TG’
∀ m : Sets. m : PG ⇔ m in PG’
∀ r : Sets. r : GS ⇔ r in GS’
∀ r : Sets. r : TGS ⇔ r in TGS’
∀ n : Sets. n : PGS ⇔ n in PGS’
∀ s : Sets. ¬ (s in Empty)
∀ t : Sets. t in PS’ ⇔ ∀ b : Sets. (b in t ⇒ b in G’)
∀ u : Sets. u in TS’ ⇒ u in PS’
∀ q, u, v : Sets. (q in u inter v ⇔ q in u ∧ q in v)
∀ a, b : Sets. (b in Uni a ⇔ ∃ c : Sets. b in c ∧ c in

a)
∀ x, y : Sets. x subset y ⇔ (∀ u : Sets. u in x ⇒ u in

y)
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%% Specific axioms for a G as topological space
Empty in TG’
G’ in TG’
∀ a, b : TG. a inter b : TG
∀ c : TG. Uni c :TG

%% Specific axioms for GS as topological space
Empty in TGS’
GS’ in TGS’
∀ a, b : TGS. a inter b : TGS
∀ c: TGS. Uni c :TGS

%% Defining ordpair
∀ u, x, y : Sets. u in x ordpar y ⇔ ((∀ t : Sets. t in

u ⇔ (t = x)) ∨ (∀ s : Sets. s in u ⇔ (s = x ∨ s
= y)))

%% Defining prod
∀ V, W : Sets. ∀ k : Sets. k in V prod W ⇔ ∃ v : V. ∃

w : W. k = v ordpair w
%% Specifying the fact that GS is G prod G

∀ x: Sets. x in GS ⇔ (∃ s,t: G. x = s ordpair t)
%% TGS is product topology

∀ z: Sets. z : TGS ⇔ (∀ w: Sets. w in z. ⇔ (∃ u, v :
Sets. (u in TS ∧ v in TS ∧ w in u prod v ∧ u prod v
subset z)))

%% Inverse image of a set under a function
∀ q : TG. ∀ x : Sets. x in invfuncplusplus(q) ⇔ ++(x)

in q
%% Condition of continuity

∀ x : PGS. (x : TGS ⇒ invfuncplusplus(x) in TG’)
end

3.3. Continuous Endomorphisms.

We will obtain the notion of continuous endmorphism starting with con-
tinuous functions (between topological spaces) and doing a conceptual iden-
tification between the domain and the codomain of the corresponding map.
Explicitly, in the former specification of the conceptual space of continuous
functions, we declare the equality of the corresponding sorts of the domain
and codomain as follows: A ∼= B; TA ∼= TB and PA ∼= PB. In this way, we
obtain the concrete specification of the notion of continuous endomorphism:
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begin CASL

%% Continuous Endomorphism

spec ContEndo =
sorts Sets, A, TA, PA;

A, TA, PA < Sets;
TA < PA,

%% A = domain and codomain of the function, TA = topology of A,
PA = powerset of A

ops EmpSet, A’, TA’, PA’ : Sets;
__ in __ : Sets × Sets
__ inter __ : Sets × Sets 7→ Sets
Uni__ : Sets
f : A 7→ A
inversef : TA 7→ TA

%% Definition of A, TA and PA
preds ∀ a : Sets. a : A ⇔ a in A’

∀ x : Sets. x : TA ⇔ x in TA’
∀ y : Sets. y : PA ⇔ y in PA’
∀ e : Sets. ¬(e in EmpSet)
∀ z : Sets. z in PA’ ⇔ ∀ p : Sets. (p in z ⇒ p in

A’)
∀ a : Sets. x in TA’ ⇒ x in PA’
∀ q, r, s : Sets. (q in r inter s ⇔ q in r ∧ q in

s)
∀ a : Sets. ∀ b : Sets. (b in Uni a ⇔ exists c :

Sets. b in c ∧ c in a)
%% Specific axioms for a A as topological space

EmptySet in TA’
A’ in TA’
∀ a, b : TA. a inter b : TA
∀ c : TA. Uni c : TA

%% Inverse image of a set under a function
∀ q : TA. ∀ x : Sets.
x in inversef(q) ⇔ f(x) in q

%% Condition of continuity
∀ x : PA. (x : TA ⇒ inversef(x) in TA’)

end
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3.4. Topological Groups.

Finally, we generate the concept of Topological Group as the following
blend (i.e. colimit) of the former two (specifications of) concepts; i.e., quasi-
topological groups and continuous endomorphisms:

Login CASL

spec QuasiTopGr =

· · ·

end

spec ContEndo =

· · ·

end

%% Topological group as a blend of QuasiTopGr and ContEndo
spec Generic =

sorts Sets, H, TH, PH, HS, THS, PHS
ops Empty, H’, TH’, PH’, HS’, THS’, PHS’: Sets

__ in __ : Sets × Sets
__ inter __ :Sets × Sets 7→ Sets
Uni: Sets 7→ Sets
Addinv: H → H

end

view I1:
Generic to QuasiTopGr
Sets → Sets, H 7→ G, TH → TG, PH 7→ PG, HS 7→ GS, THS
7→ TGS, PHS 7→ PGS, Empty 7→ Empty, H’ 7→ G’, TH’
→ TG’, PH’ 7→ PG’, HS’ 7→ GS’, THS’ 7→ TGS’, PHS’
7→ PGS’, in 7→ in, __ inter __ 7→ __ inter __ , Uni
7→ Uni, Addinv 7→ Addinv,

end
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view I2:
Generic to ContEndo
Sets 7→ Sets, H 7→ A, TH 7→ TA, PH 7→ PA, Empty 7→

EmpSet, H’ 7→ A’, TH’ → TA’, PH’ 7→ PA’, in 7→ in,
__ inter __ 7→ __ inter __, Uni 7→ Uni, Addinv 7→ f

end

spec Colimit = combine I1, I2

After doing the computation of the colimit we essentially obtain the classic
concept of topological group:

spec TopGroup =
sorts Sets, H, TH, PH, HS, THS, PHS;

H, TH, PH, HS, THS, PHS < Sets;
TH < PH, THS < PHS;

ops Empty, H’, TH’, PH’, HS’, THS’, PHS’;
__ ordpair __ : Sets × Sets → Sets
__ prod __ : Sets × Sets → Sets
__ + __ : H × H → H
__ in __ : Sets × Sets
++ : HS → H
invfuncplusplus : H → HS
Addinv : H → H
invfuncAddinv : H → H

%% Axioms for H being a group
preds ∀ x, y, z : H. (x + y) + z = x + (y + z)

∀ x : H. x + 0 = x ∧ 0 + x = x
∀ x : H. Addinv(x) + x = 0 ∧ x + Addinv(x) = 0

%% Axioms for HS being the perfect square topological space
∀ g : Sets. g : H ⇔ g in H’
∀ h : Sets. h : TH ⇔ h in TH’
∀ m : Sets. m : PH ⇔ m in PH’
∀ r : Sets. r : HS ⇔ r in HS’
∀ r : Sets. r : THS ⇔ r in THS’
∀ n : Sets. n : PHS ⇔ n in PHS’
∀ s : Sets. ¬ (s in Empty)
∀ t : Sets. t in PS’ ⇔ ∀ b : Sets. (b in t ⇒ b in H’)
∀ u : Sets. u in TS’ ⇒ u in PS’
∀ q, u, v : Sets. (q in u inter v ⇔ q in u ∧ q in v)
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∀ a, b : Sets. (b in Uni a ⇔ ∃ c : Sets. b in c ∧ c in
a)

∀ x, y : Sets. x subset y ⇔ (∀ u : Sets. u in x ⇒ u in
y)

%% Specific axioms for H as topological space
Empty in TH’
H’ in TH’
∀ a, b : TH. a inter b : TH
∀ c : TH. Uni c : TH

%% Specific axioms for HS as topological space
Empty in THS’
HS’ in THS’
∀ a, b : THS. a inter b : THS
∀ c : THS. Uni c : THS

%% Defining ordpair
∀ u, x, y : Sets. u in x ordpar y ⇔ ((∀ t : Sets. t in

u ⇔ (t = x)) ∨ (∀ s : Sets. s in u ⇔ (s = x ∨ s
= y)))

%% Defining prod
∀ V, W : Sets. ∀ k : Sets. k in V prod W ⇔ ∃ v : V. ∃

w : W. k = v ordpair w
%% Specifying the fact that HS is H prod H

∀ x : Sets. x in HS ⇔ (∃ s, t : H. x = s ordpair t)
%% THS is product topology

∀ z : Sets. z : THS ⇔ (∀ w : Sets. w in z. ⇔ (∃ u, v :
Sets. (u in TS ∧ v in TS ∧ w in u prod v ∧ u prod

v subset z)))
%% Inverse image of a set under a function

∀ q : TH. ∀ x : Sets. x in invfuncplusplus q ⇔
invfuncplusplus(x) in q

%% Condition of continuity
∀ x : PHS. (x : THS ⇒ invfuncplusplus(x) in TH’)

%% Inverse image of a set under a Addinv
∀ q : TH. ∀ x : Sets.

x in invfuncAddinv(q) ⇔ Addinv(x) in q
%%condition of continuity

∀ x : PH. (x : TH ⇒ invfuncAddinv(x) in TH’)
end
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The former specification is considerably larger than the one usually given
in the text books due to the fact that we include additionally the minimal
set-theoretical information required to define an essentially autonomous con-
cept which can be coherently described with the semantic tools of CASL and
HETS. In fact, the former conceptual computation were explicitly run and
proved in HETS.

We also can state the results presented in the former specifications in the
form of a global (meta-)theorem describing categorical constructions done
before in terms of colimits:

Theorem 3.1. The concept of topological group, viewed as a unique object
of the co-complete category of many-sorted first-order theories with axiom-
preserving signature morphisms, can be generated recursively by means of three
formal colimits (blends), starting from the concepts of (enriched groups, con-
tinuous functions and continuous endomorphisms).

4. Conclusions

In Figure 4, we present a diagrammatic summary of the whole recursive
generation done through formal conceptual blending with the help of concep-
tual identification.

The fact that we explicitly find artificial specifications of sophisticated con-
cepts in abstract algebra and topology represents valuable domain-specific ev-
idence for the universality of the meta-tools described by means of categorical
formalizations of conceptual blending (and, in an indirect way, by the more
informal categorical approach of conceptual identification made in terms of
sorts’ identifications).

The former results also promote the thesis that the potential scope of the
co-creative power of artificial interactive systems regarding mathematical in-
vention goes beyond the typical elementary structures classically studied, e.g.,
the complex numbers [8].

Finally, this research goes towards the development of new forms of con-
ceptual co-creative cybernetics in the domain of interactive mathematical
creation. In fact, previous forms of this new kind of cybernetics were de-
veloped within the multidisciplinary research consortium COINVENT [17],
[6]. Specifically, in [5], an interactive co-creative computational prototype
called COBBLE is presented, materializing artificial co-innovative reasoning
in mathematics and music (harmonization) based on notions coming not only
from conceptual blending theory, but also from analogical reasoning, formal
ontology theory, logic programming and formal methods. So, the collection
of results presented here can be seen as a first theoretical step towards ex-
tensions of such computational prototypes to broader mathematically-based
disciplines.
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Topological Group

Quasi-Topological Group

(Enriched) Group

Continuous
Binary Operation

Continuous
Endomorphism

Perfect Square
Topological Space

Continuous Functions
Between Topological Spaces

Blend

Blend

Specialization Blend

Figure 1. Diagrammatic Representation for the recursive
generation of the concept of Topological Group through For-
mal Conceptual Blending and specialization
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