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ABSTRACT. In this paper, we study stronger forms of Goldbach’s conjecture
enriched with the linear representations of prime numbers given by the clas-
sical Dirichlet theorem and its extensions. We call such a representation
a Goldbach-Dirichlet representation (GD-representation). Among other re-
sults, we show that Dirichlet’s Theorem on Arithmetic Progressions is, in
general, not true in the ring of formal power series over the integers. Ad-
ditionally, we use a polynomial version of the Schinzel hypothesis due to A.
Bodin, P. Dèbes and S. Najib to prove the existence of GD-representations
for a wide collection of polynomial rings over special families of fields of
characteristic zero, among others. Moreover, we study the (non)validity of
Dirichlet’s Theorem over several families of commutative rings with unity
like polynomial and formal series rings. Finally, we obtain a generalization
for polyomial rings of the celebrated Green–Tao Theorem.

INTRODUCTION

Motivated by the heuristic and multidisciplinary principles of the New
Cognitive-Computational Foundations’ of Mathematics Program as the first
basic pillar of Cognitive-Computational Metamathematics (CCMM) or Artifi-
cial Mathematical Intelligence (AMI) [GR20], and following similar method-
ological principles of our previous work [BGR]; we study seminal problems
in classic number theory like Dirichlet’s and Green-Tao’s theorems on arith-
metic progressions, and Goldbach’s conjecture from an extended perspective.
In fact, we develop a sort of bottom-up heuristic approach for extending and
enriching these results to very similar, although in some aspects significantly
different, algebraic-arithmetic structures in comparison with the standard ring
of usage in number theory: the integers. Even more, we obtain a lot of moti-
vation by the initial global taxonomy of fundamental metamathematical cog-
nitive mechanisms that use our minds responsible for our abstract-formal cre-
ativity and immersed in the whole multidimensional goal of CCMM [GR20,
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Part II]. In particular, our working perspective for refining, extending and en-
lightening the aforementioned problems (and, in general, any mathematical
inquiry) is not simply starting by solving particular cases of the initial puzzle
with an increased generality, but changing slightly both the original inquiry
as well as the ground algebraic structure involved. Following these lines we
were able to find a wide spectrum of innovative extensions, some of them
computationally feasible, of Goldbach’s conjecture [BGR].

Most of the results described in this paper can be seen as a form of ex-
tended Diophantine scrutiny for formal polynomial-like structures in the fol-
lowing sense. Classic Diophantine analysis is understood as resolving equa-
tions of the form P pxq “ 0 for P pxq P Zrxs, i.e., where the variables x P Zn.
Equivalently, its core purpose is to find solutions of the relation P pxq P t0u

for x P Zn (or, for some suitable subset of Zn). So, if we allow to change
the set t0u by other sets with highly arithmetical interest, like, for example,
the set PR of irreducible (e.g., prime) elements of the ring in consideration
(typically R “ Z), then we see that a lot of classic results and conjectures in
(classic) Number Theory like Schinzel’s hypothesis H [SS58], Landau’s con-
jecture [Pin09], and Dirichlet’s theorem for primes in arithmetic progressions
[Kha22, Theorem 10.10], among others, can be formally seen as an extended
part of Diophantine analysis.

One of the main goals of this paper is to study (non)extensions of Dirichlet’s
theorem on primes in arithmetic progressions for additional rings of interest.
Recall that the classic form of Dirichlet’s theorem for primes in arithmetic
progressions asserts [Kha22, Chapter 10, Theorem 10.10] that if a and b are
relatively prime positive integers, then there are infinitely many primes in the
arithmetic progression ap´q ` b running over the positive integers. The first
general question we want to partly tackle in this paper is the following.

Question 0.1. Let R be a commutative unique factorization domain (UFD), and
let a, b P R be coprime elements; in other words, they satisfy

Ra X Rb “ Rab.

Under which conditions we can guarantee that the arithmetic progression aX`b
contains infinitely many prime elements of R?

So, following the methodological heuristics of Cognitive-Computational
Metamathematics (CCMM) or Artificial Mathematical Intelligence [GR20], we
see that two algebraic structures of interest for studying Question 0.1 would
be Zrxs and Zrrxss. For more details along these methodological lines, the
reader can see the introduction of [BGR] to get a deeper idea about the main
heuristic principles coming from CCMM in the context of studying suitable
and enlightening extensions of Goldbach’s conjecture.
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One of the main results of this paper (see Theorem 3.3) is to provide a
counterexample to Question 0.1 over the ring Zrrxss. This does not come com-
pletely as a surprise for us, mainly because it has been recently proved by
E. Paran in [Par20] that Goldbach’s conjecture does not hold in general over
Zrrxss. Both results show, roughly speaking, that the rings Z and Zrrxss have a
quite different arithmetic nature.

In general, in the literature one has studied a lot properties of Zrrxss in-
volving concepts of commutative algebra like Krull dimension, primal ideals,
UFD-s, among others. However, regarding Zrrxss there are no so much results
about subtle arithmetical properties like the ones coming from elementary
number theory and involving extensions of classic problems like Dirichlet’s
theorem, etc. which are one of the main goals of this paper.

Another beautiful recent result about primes in arithmetic progressions is
the so–called Green–Tao’s Theorem, obtained by Green and Tao in [GT08,
Theorem 1.1]. It asserts that, given any k P N, there are coprime integers a
and b such that all the numbers a ` b, a ` 2b, . . . , a ` kb are primes. The
second general question we want to tackle in this paper is the following one.

Question 0.2. Let R be a commutative unique factorization domain, let r P R
and an integer k ě 1. Under which assumptions we can guarantee the existence
of coprime elements a, b P R such that all a ` r ¨ b, a ` 2r ¨ b, . . . , a ` kr ¨ b are
prime elements of R?

The second goal of this paper is to extend the Green–Tao’s Theorem for
polynomial rings in several variables with coefficients either integers or in a
field of characteristic zero, providing a partial positive answer to Question 0.2.
We refer to Theorem 5.2 for the precise statement. Concerning Question 0.2,
and to the best of our knowledge, the only attempt to partially tackle it has
been done in [GOS23].

Now, we provide a brief outline of the contents of this paper for the conve-
nience of the reader. First of all, in Section 1, after recalling some notations
and facts we plan to use along the paper, our main goal will be to introduce
the so–called Goldbach–Dirichlet Representations (see Definition 1.4) which
will play a crucial role in Section 4 of this paper. Secondly, in Section 2 we
provide results analogous to Dirichlet’s theorem for primes in arithmetic pro-
gressions, on the one hand, for the polynomial ring in several variables over
the integers (see Theorem 2.1) and, on the other hand, for some rings of in-
tegers of number fields (see Proposition 2.2). Section 3 contains one of the
main results of this paper (see Theorem 3.3); namely, a counterexample to
Dirichlet’s theorem for primes in arithmetic progressions over the ring Zrrxss.
In Section 4, building upon the celebrated results obtained by Bodin, Dèbes
and Najib in [BDN20], we show one of the most surprising results in this pa-
per, the existence of Goldbach–Dirichlet representations for polynomial rings,
which can be seen as a stronger and global form of the Chinese Remainder
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Theorem for certain kinds of polynomial rings. Finally, in Section 5 we obtain
the third main result of this paper (see Theorem 5.2); namely a extended and
‘kind of irregular form ’of Green–Tao theorem for a polynomial ring in several
variables over a field of characteristic zero.

1. PRELIMINARIES

The goal of this section is, on the one hand, to establish some results that
will be used along the rest of the paper and, on the other hand, to introduce
the notion of Goldbach–Dirichlet’s representation that will play a key role
along the paper, overall in Section 4.

The first fact we want to single out is the following one.

Remark 1.1. Let R be an integral domain (not necessarily factorial), and let
a, b P R be coprime elements; in other words, they satisfy

Ra X Rb “ Rab.

Under these assumptions, it is known [Fos73, Lemma 14.1] that bX ´ a is a
prime element of RrXs.

Now, we want to review a polynomial form of Schinzel’s hypothesis for
some polynomial rings proved in [BDN20, Theorem 1.1. and Lemma 2.1].
Let us explicitly state the form of the result that we need here.

Theorem 1.2. Let R be either Z or Krzs :“ Krz1, . . . , zms the ring of poly-
nomial on several variables over an arbitrary field K (or more generally, let R
be an infinite UFD with fraction field F with the product formula, or imperfect
(Fp ‰ F) in the positive characteristic case). Let S “ Rrxs :“ Krx1, . . . , xns, for
n ě 1, and let P1, . . . , Pw P Rrx, ys “ Srys be irreducible polynomials of degree
ě 1 in y.

Then, there exist M P S of arbitrarily large degree in each of the variables
such that P1px,Mpxqq, . . . , Pwpx,Mpxqq are all irreducible in S.

Remark 1.3. In Theorem 1.2, and for the purposes of generality of our presen-
tation, we can think of R being either Z or a polynomial ring in several variables
over a field of characteristic zero. Note that under the hypothesis of Theorem 1.2
it is not necessary to impose the analogue version of the classic (technical) con-
dition of Schinzel conjecture, (i.e., no irreducible (prime) polynomial Q P S
divide the product

św
n“1 Pnpx,Mpxqq for all Mpxq P S, since this happens in

the context of the given hypothesis due to [BDN20, Lemma 2.1].

1.1. Goldbach-Dirichlet Representations. The goal of this part is to intro-
duce the notion of Goldbach–Dirichlet representations over unique factoriza-
tion domains. Roughly speaking, our goal is to find rings where Goldbach’s
conjecture can be achieved using just primes in arithmetic progressions. The
precise statement is formulated as follows.
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Definition 1.4. Let S be a unique factorization domain (UFD). We say that
S has Goldbach-Dirichlet additive representations of length n ` 1, (or, sim-
ply, GD-representations) for some fixed n P N, if for any Q P S, and any
a0, a1, . . . , an, P S, b0, b1, . . . , bn P S such that the following two seminal condi-
tions hold:

(i) gcdpai, biq “ 1 for all i “ 1, . . . , n.
(ii) gcdp

řn
i“1 ai,

řn
i“1 bi ´ Qq “ 1.

(iii) (a0 is a unit in S. In the case that this additional condition holds, we say
that S has special Goldbach-Dirichlet additive representations of length
n ` 1, or, simply, SGD-representations)

Then, Q can be represented as the sum of n ` 1 prime elements of S, pi “

aiy ` bi, for a (global) y P S. In other words, there exists a special additive
representation of Q of the form

(1.1) Q “

n
ÿ

i“0

paiy ` biq, where each term aiy ` bi is prime in S.

If Q can be represented as the sum of n ` 1 prime elements of S, pi “ aiyi `

bi, for some (possibly different) yi P S, the we say that S has Local (Special)
Goldbach-Dirichlet representations. (or simply L(S)GD-representations), i.e.,

(1.2) Q “

n
ÿ

i“0

paiyi ` biq, where each term aiyi ` bi is prime in S.

Remark 1.5. The reader will easily notice that condition (i) of Definition 1.4
implies that, for any 1 ď i ď n, the polynomial aiX ` bi P SrXs is irreducible.
This is exactly what we review along Remark 1.1. By the same reason, condition
(ii) of Definition 1.4 implies that the polynomial

˜

n
ÿ

i“1

ai

¸

X `

˜˜

n
ÿ

i“1

bi

¸

´ Q

¸

is irreducible.

2. DIRICHLET ’S THEOREM FOR POLYNOMIAL RINGS OVER THE INTEGERS AND

FOR SOME RINGS OF INTEGERS OF NUMBER FIELDS

The goal of this section is to state and prove Dirichlet’s type results for
arithmetic progressions, on the one hand, over a polynomial ring in several
variables over the integers and, on the other hand, over some rings of integers
of number fields.

First of all, recall that it is known that the polynomial ring Zrxs is a unique
factorization domain, see for instance [Fos73, Theorem 8.1 and Corollary
8.2].
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The first result of this section is the following one, which can be regarded
as a consequence of Theorem 1.2.

Theorem 2.1. Let S :“ Zrx1, . . . , xns, with n ě 1 and let a, b P S be coprime
elements, i.e., a and b have no common prime divisors. Then, there are infinitely
many elements w P S such that aw ` b is prime in S.

Proof. Set R “ Z, S “ Rrx1, . . . , xns and P1px1, . . . , xn, yq :“ ay ` b P Srys

in Theorem 1.2. Since a and b are coprime by assumption, Remark 1.1 en-
sures that P1 is irreducible in Srys. Thus, by Theorem 1.2 there are infin-
itely many polynomials (of arbitrarily large degree on any fixed variable xj)
w :“ Mpx1, . . . , xnq such that aw ` b is irreducible (prime) in the UFD S. □

Our second main result in this section is a Dirichlet’s theorem for arithmetic
progressions over the Gaussian integers and over the Eisenstein integers.

Proposition 2.2. The following assertions hold.

(i) Let R “ Zris be the ring of Gaussian integers, and let p, q be integers that
are Gaussian primes. Then, the arithmetic progression px ` q contains
infinitely many integers that are Gaussian primes, where x runs over all
the positive integers.

(ii) Let R “ Zrωs be the ring of Eisenstein integers, and let p, q be prime
integers that are Eisenstein primes. Then, the arithmetic progression px`q
contains infinitely many integers that are Eisenstein primes, where x runs
over all the positive integers.

Proof. First of all, let p and q be integers that are Gaussian primes. It is known
(see for instance [Neu99, Theorem (1.4)]) that both p and q are primes of
the form p “ 4n ` 3, q “ 4m ` 3, n ě 1, m ě 1. Now, we observe that
px ` q ” 3 pmod 4q if and only if x “ 4k for some integer k ě 1. Therefore,
we have that px ` q “ 4pk ` q, and since gcdp4p, qq “ 1, we conclude, by
appealing to Dirichlet’s theorem on arithmetic progressions over Z and to
[Neu99, Theorem 1.4], that the sequence px ` q contains infinitely many
positive integers that are Gaussian primes.

Secondly, let p and q be integers that are Eisenstein primes. Then, it is
known (see for instance [Cox22, Chapter 1, §4.A]) that both p and q are
primes of the form p “ 3n ` 2, q “ 3m ` 2, n ě 1, m ě 1. Assume that
x only can take positive integer values; in this case we have that px ` q ” 2
pmod 3q if and only if x “ 3k for some integer k ě 1. Therefore, we have
that px ` q “ 3pk ` q, and since gcdp3p, qq “ 1, we conclude, by appealing
to Dirichlet’s theorem on arithmetic progressions over Z and to [Cox22, Ch 1.
§4.A], that the sequence px` q contains infinitely many positive integers that
are Eisenstein primes. □
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Remark 2.3. Recall that, given β P Zris that is not divisible by 1 ` i, there
are infinitely many Gaussian primes p satisfying p ” 1 pmod βq, see [LE23,
Corollary 4.21].

Now, let K be a number field, and let ZK be its ring of integers. Following
standard terminology in Algebraic Number Theory, given p P Z a prime num-
ber, we say that p is inert in K provided the principal ideal pZK is a prime
ideal of ZK . On the one hand, it is known that if the Galois group of the field
extension K | Q is not cyclic, then there are only finitely many inert primes in
K, see [Neu99, Chapter I, §9, Exercise 1]. On the other hand, it is also known
that, if the Galois group of K | Q is cyclic, then there are infinitely many inert
primes in K, see for instance [Jan73, Chapter IV, Corollary 5.4]. Motivated
by Proposition 2.2, we want to raise the following question.

Question 2.4. Let K be a number field such that the Galois group of K | Q
is cyclic, and let p, q be prime numbers that are inert in K. Is it true that the
arithmetic progression px ` q contains infinitely many inert primes in K, where
x runs over the non–negative integers?

Remark 2.5. The question is even interesting in case of a quadratic field exten-
sion. Indeed, let D be a squarefree integer, let K “ Qp

?
Dq, and let p, q be

prime numbers that are inert in K. By [Kha22, Theorem 4.11], we know that

ˆ

D

p

˙

“ ´1 “

ˆ

D

q

˙

,

where p´q denotes the Kronecker symbol. In other words, p and q are prime
numbers not dividing D such that D is not a quadratic residue neither modulo p
nor modulo q. However, for us it is not clear whether the arithmetic progression
px ` q contains infinitely many prime numbers such that D is not a quadratic
residue modulo px ` q.

Remark 2.6. To the best of our knowledge, one of the few places where arith-
metic progressions over number fields have been considered is in [FJ23]. Indeed,
given a number field K with ring of integers ZK , it is known [FJ23, Theorem
14.3.6] that, on the one hand, any separable Hilbert set H of K [FJ23, pages
229–230] contains an arithmetic progression and, on the other hand, that the
intersection of any arithmetic progression with H is non–empty. However, the
reader has to keep in mind that, according to [FJ23, page 253], the authors
define an arithmetic progression in ZK as a set of the form q ` a, where q P ZK

and a Ă ZK is an ideal. In this way, at least for us, it is not clear whether a
separable Hilbert subset of K contains an arithmetic progression in our sense,
where we only deal with a a principal ideal.
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3. THE NON–VALIDITY OF DIRICHLET ’S THEOREM IN THE RING OF FORMAL

POWER SERIES OVER THE INTEGERS

The goal of this section is to show that Dirichlet’s Theorem for primes in
arithmetic progressions is in general not true over the ring of formal power
series in one variable over the integers. We start by first recalling some known
facts.

Indeed, it is known that the formal power series ring Zrrxss is a unique fac-
torization domain, due to a theorem by P. Samuel [Sam61, Theorem 2.1 and
Corollary 2.2], since Z is a PID (see also additional proof in [BG08, Theorem
3.8.] and [Fos73, Chapter V] for more general statements). So, in Zrrxss the
notions of prime and irreducible element coincide.

Definition 3.1. Let R be a commutative ring with unity, and a, b P R. We say
that a and b are essentially the same element (as factor) if they are associate, i.e.,
there exists a unit u P R such that a “ ub. In particular, we say that a collection
of elements U Ď R has cardinality essentially ω if the cardinality of U{rel has
cardinality ω, where rel is the equivalence relation given by being associate. So,
if we say that a collection of elements U is essentially infinite, then it means
that U has infinitely many elements (resp. finite) even when we consider two
associates as the same element.

The former definition is particularly useful when we consider a ring with
infinitely many units. In other words, in this case, a set with infinitely many
elements can have essentially finite elements, i.e., finite equivalence classes
of certain sort of elements, where each class has infinitely many elements.

Remark 3.2. Note that coprimality in the ring of formal power series over the
integers is a more subtle condition than just verifying that the corresponding
independent terms are coprime. Explicitly, keep in mind that a special class of
prime element in Zrrxss are the series

h “
ÿ

iě0

hix
i, hi P Z,

such that h0 “ pk for some prime p and a natural number k ą 0, and h1 not
being divisible by p [BGW12, Proposition 2.1.(c)]. So, for example, the elements
r “ p ` x and s “ p2 ` x are prime. Thus, r2 and s both have as independent
term p2, however, both are coprime as formal series, because they are formed as
the product of completely different primes, i.e., r and s, respectively. In fact, r
and s cannot be associated because all the units in Zrrxss are exactly the series
with independent term ˘1 [BG08, Proposition 3.1]. So, the fact that two formal
series a and b are coprime as series does not imply any similar concrete condition
on the level of the independent terms a0 and b0.

Indeed, as an example let p P Z be a prime number. Note that in Zrrxss

the elements a “ p ` x and b “ p ` 2x are different prime elements, since its
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independent terms are primes. So, a and b are coprime. However, a0 “ b0 “ p
are not coprime numbers.

Regarding Dirichlet’s theorem on primes in arithmetic progressions for
Zrrxss, we will show in the form of the next statement that there is a sim-
ple and elementary counterexample. However, in this setting there are much
additional interesting properties to study about the (non-)validity of Dirich-
let’s theorem for sequences of the form ah ` b, where a, b P Zrrxss are fixed
elements and h varies as formal series. These phenomena will be studied in
more detail in Proposition 3.5.

Theorem 3.3 (Counterexample to an analogue for formal power series of
Dirichlet’s Theorem). Let S :“ Zrrxss and let a “ 34 ` x P S and b “ 6 P S.
Then, a and b are coprime elements of S, and the sequence ah ` b varying h P

S contains only non-irreducible elements. In other words, ah ` b is always a
reducible element in S.

Proof. Firstly, note that a “ 2 ˆ 17 ` x. So, following the proof of [BG08,
Proposition 3.4], we see that there exist two formal series p, q P S, such that
a “ pq, with p0 “ 2, and q0 “ 17. More explicitly, if

ppxq “
ÿ

iě0

pix
i, qpxq “

ÿ

iě0

qix
i,

then we have, since 1 “ p´8q ˆ 2 ` 1 ˆ 17 is the Bézout identity for 2 and 17,
that

p0 “ 2, p1 “ 1, pj “ ´

j´1
ÿ

k“1

pkqj´k, pj ě 2q,

q0 “ 17, q1 “ ´8, qj “ 8
j´1
ÿ

k“1

pkqj´k, pj ě 2q.

Now, by [BG08, Proposition 3.3] p and q are prime elements of S since their
independent terms are primes in Z. Due to the fact that the coefficient of x in
a is 1, we verify directly that neither p nor q can be constant formal series. So,
a “ p ˆ q is a prime decomposition of a in S. On the other hand, by [BG08,
Proposition 3.2.] b “ 2 ˆ 3 is the prime decomposition of b in S. Finally,
note that 2 and p are non-associates, because otherwise 2 would divide all the
coefficients of p, but p1 “ 1. Thus, since the former prime factors in S of a
and b are all essentially different, we conclude that a and b are coprime in S.

For the last part, by [BG08, Proposition 3.4] it is enough to show that
a0h0 ` b0 is neither zero nor a prime power for all h0 P Z. In fact, since 17
does not divide 6, then a0h0 ` b0 ‰ 0. Furthermore, note that a0h0 ` b0 “

2p17h0 ` 3q. So, a0h0 ` b0 is a prime power if and only if 17h0 ` 3 is 1 or a
power of 2. Clearly 17h0 `3 ‰ 1, so, it remains to show that 17h0 `3 ‰ 2k, for
any k ě 1. Effectively, by direct computation we verify that the only possible
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residues r of powers of 2 modulo 17 are r “ 1, 2, 4, 5, 8, 9, 13, 15 and 16. On
the other hand, 17h0 ` 3 has always residue 3 modulo 17. So, 17h0 ` 3 can
never be a power of two, for any h0 P Z. In conclusion ah ` b is never an
irreducible element of S. This finishes our proof. □

Remark 3.4. The counterexample given by Theorem 3.3 should be compared
with Theorem 2.1. Indeed, once again setting a “ 34 ` x and b “ 6, we observe
that, on the one hand, Theorem 2.1 ensures that the arithmetic progression aY `

b produces infinitely many irreducible elements of Zrxs when Y P Zrxs. However,
on the other hand our counterexample shows that aY `b produces no irreducible
elements of Zrrxss when Y P Zrrxss.

Theorem 3.3 shows that in Zrrxss the arithmetic progression ay ` b might
contain no irreducible elements. In the next result, we explore in some detail
how general is this phenomenon in this power series ring.

Proposition 3.5. Let S :“ Zrrxss and let a, b P Szt0u be coprime elements, i.e.,
a and b have no common prime divisors. Then, the following assertions hold.

(i) If gcdpa0, b0q “ 1, then there are essentially infinitely many prime elements
of the form aw ` b varying w P S.

(ii) If gcdpa0, b0q “ d ‰ 1 is not a prime power, then there are essentially
finitely many prime elements of the form aw ` b varying w P S.

(iii) If gcdpa0, b0q “ pm, for some prime number p and some natural number
m ą 0; such that pm`1|a0 and pm`1 ∤ b0, then there are essentially finitely
many prime elements of the form aw ` b varying w P S.

(iv) If gcdpa0, b0q “ pm, for some prime number p and some natural number
m ą 0; such that pm`1 ∤ a0, then there could be essentially finitely many
prime elements or infinitely many primes of the form aw`b varying w P S,
depending of the particular values of a0, a1, b0.b1.

Proof. Let h “
ř8

i“0 hix
i P Zrrxss be a generic element. Set a “

ř8

i“0 aix
i and

b “
ř8

i“0 bix
i, where ai, bi P Z, for i P N.

(i) Assume that gcdpa0, b0q “ 1. Then, by the classic version of Dirichlet’s
theorem for primes in arithmetic progressions [Kha22, Theorem 10.10], there
exists infinitely many h0 P N such that a0h0`b0 are prime numbers. Moreover,
we know that if the independent term H0 of an element H P Zrrxss is prime in
Z, then H is prime in Zrrxss (see, for example, [BG08, Proposition 3.3.]). So,
simply choose infinitely many h P Zrrxss with independent term in the former
collection of h0’s, and we obtain essentially infinitely many different prime
elements of the form ah ` b.

(ii) Assume that gcdpa0, b0q “ d ‰ 1 is not a prime power. Then, for all
h0 P Z, a0h0 ` b0 “ dpa1

0h
1
0 ` b1

0q (with gcdpa1
0, b

1
0q “ 1) is never a prime

power, or it is zero. The case of being zero is only possible for a1
0 “ a0{d “ 1,

and h0 “ ´b0. So, ah ` b “ xspxq, for some spxq P S. Then, for all possible
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values of hi P Z, for i ě 1, ah ` b is either reducible or an associate of
the prime element x P S. Thus, for this special subcollection of h’s in S,
ah ` b is essentially at most one irreducible element. For the rest of possible
values of h P S, the elements a0h0 ` b0 ‰ ˘1 are neither prime powers nor
invertible elements. So, in these cases the corresponding power series are
always reducible (see [BG08, Proposition 3.4.]). In conclusion, the version of
Dirichlet’s theorem does not hold in this case.

(iii) Assume that gcdpa0, b0q “ pm, for some prime number p and some
natural number m ą 0 such that pm`1|a0 and pm`1 ∤ b0. Then, for any h P

Zrrxss, a0h0 `b0 “ pmppa1
0h0 `b1

0q, with a1
0 “ a0{pm`1 P Z, and gcdpb1

0, pq “ 1.
So, a0h0 ` b0 is never zero, invertible, or a power of a prime since pa1

0h0 ` b1
0

is never zero, or divisible by p. In conclusion, again by [BG08, Proposition
3.4.] ah ` b is always reducible.

(iv) Firstly, the example given in Theorem 3.3 gives a case satisfying the
hypothesis with essentially finite (indeed none) number of primes of the form
ah ` b varying h P S. Additionally, for the second possible conclusion, set
a “ 6, b “ 3 ` x, and c “ ah ` b for h P S. Note that a and b are coprime due
to the fact that b is itself prime (since its independent term is prime) and it
is different from all the prime factors of 6 which are 3 and 2 as power series.
Moreover, note that c0 “ 3p2h0 ` 1q. Choose, for i P Ną0, h

piq
0 P Z such

that 2h
piq
0 ` 1 “ 3i, hpiq

1 “ 1, and choose h
piq
j arbitrarily in Z, for j P Ně2.

Then, cpiq
0 “ 3.3i “ 3i`1 and c

piq
1 “ a0h

piq
1 ` a1h

piq
0 ` b1 “ 7. So, by [BGW12,

Proposition 2.1.(c)] cpiq is prime for all i ě 1. Moreover, if i1 ‰ i2, then cpi1q is
not associated to cpi2q because their independent terms are not associated in Z
(remember that the units in S are exactly the series with an independent term
˘1 [BG08, Proposition 3.1]). In conclusion, we obtain essentially infinitely
many irreducibles of the form ah ` b varying h in S. □

Remark 3.6. The question of characterizing algebraically and arithmetically
the pairs of series pa, bq P Zrrxss2 for which there are essentially infinitely many
primes in the series ah ` b, varying h, in terms of suitable conditions for the
coefficients ai and bi (with i P N), is a much more complex concern, partially,
because, on the one hand, although there is an irreducibility criterion in Zrrxss

(see [Ell14, Theorem 1.4]), it is not so easy to check the conditions given by
Elliot in practice. On the other hand, there are different families of irreducible
series sharing, for example, a fixed prime power independent term (see, for ex-
ample, the collections of examples provided in [BG08, §4]).

4. GOLDBACH-DIRICHLET REPRESENTATION FOR SOME POLYNOMIAL RINGS

The goal of this section is to present our main results about the Goldbach–
Dirichlet representations introduced in Section 1 for some polynomial rings.

More precisely, our first main result is the following one.
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Theorem 4.1. Let K be a field of characteristic zero and let S “ Krxs :“
Krx1, . . . , xms, where m ě 1. Then, S has SGD-representations of length n `

1, for each n P N. In fact, it has infinitely many SGD-representations with
arbitrarily large degree with respect to any fixed variable xi.

Proof. Let Q P S, and a0, a1, . . . , an P S, b0, b1, . . . , bn P S fulfilling the con-
ditions of Definition 1.4. Define the polynomials Pipyq :“ aiy ` bi P Srys, for
i “ 1, . . . , n, and P0pyq :“ p

řn
j“1 ajqy ` p

řn
j“1 bjq ´ Q P Srys. Because of

the assumptions that we impose along Definition 1.4 we can guarantee, as we
have already pointed out along Remark 1.5, that P0, . . . , Pn are irreducible
linear polynomials in Srys.

In conclusion, applying Theorem 1.2 to P0, P1, . . . , Pn P Srys, we deduce
that, in particular, there exists a polynomial Mpxq P S such that Q0 :“
P0px,Mpxqq, . . . , Qn :“ Pnpx,Mpxqq are all primes in S. Now, set

M0pxq :“
´Q0 ´ b0

a0
, R0pxq :“ a0M0 ` b0, Ripxq :“ Qipxq, 1 ď i ď n.

By what we have already saw, all the Ri are irreducible polynomials of S.
Moreover, by construction we also have that

Q “

n
ÿ

i“0

Ri.

The last part of our theorem follows from the fact that due to Theorem 1.2 we
can choose Mpxq of arbitrarily large degree with respect to any fixed variable
xi. This finishes our proof. □

Remark 4.2. A very natural question at this stage is related with the existence
of arbitrary GD-representations for integers (i.e., S “ Z) exactly in the manner
that we stated Definition 1.4.

For instance, if n “ 1, Q “ 3, a0 “ b0 “ 1 and a1 “ 100 and b1 “ 1 are
parameters satisfying the conditions of Definition 1.4, then 3 cannot be written
as the sum (or difference) of prime numbers p0 “ a0x0 ` b0 and p1 “ a1x1 ` b1,
since each integer i that can be expressed as a sum of two primes of this form
must fulfill the following conditions: either i “ 2, or i ą 100, or i ă ´97. In
fact, the same argument applies for each integer Q P t3, 4, 5, . . . , 100u.

Even more, in the case of SGD-representations, we can also find counterexam-
ples. Effectively, set n “ 1, Q “ 20k ` 1 (for any k P Z), a0 “ b0 “ b1 “ 1 and
a1 “ 4. So, the former parameters satisfy the conditions of Definition 1.4, since
gcdp5, 2 ´ p20k ` 1qq “ 1, due to the fact that 5 does not divide 2 ´ p20k ` 1q “

´20k ´ 1. Furthermore, since the only possible residues of prime numbers mod-
ulo 4 are either 1, 2 or 3 and the only primes allowed with Dirichlet’s form 4m`1
possess obviously remainder 1 modulo 4, then the sum for two primes with the
former Dirichlet’s form have residue either 0, 2 or 3 modulo 4. Then, they never
can express a number of the form Q “ 20k ` 1, which has residue 1 modulo 4.
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Another way to look at this couple of examples is the following one. In the
second case, we want to solve the system of equations and congruences

Y0 ` Y1 “ 20k ` 1, Y1 ” 1 pmod 4q.

The congruence is equivalent to Y1 “ 1 ` 4λ for some λ P Z. In this way, it
follows that Y0 “ 20k ` 1 ´ Y1 “ 20k ´ 4λ “ 4p5k ´ λq, which can never take
a prime value for any pk, λq P Z2.

A similar argument works in the first case; indeed, in that case we want to
solve the system Y0 “ 3 ´ Y1, Y1 ” 1 pmod 100q. This implies Y0 “ 2p1 ´ 50λq

for some λ P Z, so Y0 can never reach a prime value unless λ “ 0.

Remark 4.3. Condition (1.2) can be phrased in terms of a linear system of
equations. Indeed, under the assumptions of Definition 1.4 the existence of an
SGD representation is equivalent to the following system of equations:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Y0 ` . . . ` Yn “ Q

Y0 ”8 b0pmod a0q

Y1 ”8 b1pmodun a1q

...
Yn ”8 bnpmodun anq

Y0, . . . , Yn P PS ,

where PS denotes the set of irreducible elements of S, and ”modun” means uni-
form modularity, in other words, that the elements given solutions to each of
the congruences can be chosen uniformly as one, i.e., there is a kind of global
solution of the system of congruences. Finally, the sub-index 8 means that there
are infinitely many uniform global solutions to the systems of equations. Note
that in the proof of Theorem 4.1 the solution to the first congruence for i “ 0 is
not uniform (or global) regarding the global solution of the remainder ones. So,
we do no write ”modun” for it.

Actually, a slightly stronger statement can be proved, we plan to use in a
crucial way the following result, the interested reader can consult [BDN20,
Theorem 1.3].

Theorem 4.4. Assume that n ě 2 is an integer, and that K is an arbitrary field.
Let pa1, b1q, . . . , pas, bsq be s pairs of non–zero relatively prime polynomials in
Krx1, . . . , xns. Then, there is an integer d0 ě 1 satisfying the following property.

For all integers d1, . . . , dn larger than d0, there exists an irreducible polyno-
mial M P Krx1, . . . , xns such that ai ` biM is irreducible in Krx1, . . . , xns for
any 1 ď i ď s, and degxj

pMq “ dj for any 1 ď j ď s.

Replacing along the proof of Theorem 4.1 the use of Theorem 1.2 by Theo-
rem 4.4 we obtain the following statement, which makes no assumptions on
our base field K.
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Theorem 4.5. Assume that m ě 2 is an integer, and that K is an arbitrary
field. Then, S :“ Krx1, . . . , xms has SGD-representations of length n ` 1, for
each n P N. In fact, it has infinitely many SGD-representations with arbitrarily
large degree with respect to any fixed variable xi.

Remark 4.6. Note that it seems not straightforward how to generalize the proof
of Theorem 4.1 for the case of GD-representations due to the fact that, if a0 does
not divides

řn
i“1 ai, then one cannot give so easily the form of a0P 1

0pxq ` b0 to
the term P0pxq.

5. AN EXTENSION OF THE GREEN-TAO THEOREM FOR POLYNOMIAL RINGS IN

CHARACTERISTIC ZERO

The Green-Tao theorem over the integers establishes that there are arbi-
trarily large consecutive blocks of arithmetic progressions consisting entirely
of prime numbers. In other words, for all k P N there exist (coprime) integers
a and b such that all the numbers a ` b, 2a ` b, . . . , ka ` b are prime numbers
[GT08, Theorem 1.1].

If we understand the concept of walking along polynomials in the standard
sense of increasing the (total) degree and considering whole families of poly-
nomials with (total) degree smaller than a fixed natural bound. For the sake
of completeness we state explicitly the result given in [GOS23, Theorem 1].

Theorem 5.1. Let D be an integral domain, let n ě 2, let k ě 1 be an integer,
and set Ak :“ tp P Drx1, . . . , xns : degpP q ď ku. Then, setting

fpx1, . . . , xnq “ xk`3
n ` x1 ¨ ¨ ¨xn´1, gpx1, . . . , xnq “ x2

1,

we have that, for any h P Ak, f ` gh is irreducible in Drx1, . . . , xns.
Here, we establish a version of the Green-Tao theorem in the setting of a

ring S equal either to the ring of polynomials in at least two variables over a
field of characteristic zero, or to the ring of polynomials in at least one vari-
able over the integers. In this setting, we can give a rough generalization of
the notion of ‘consecutive’ element in the following sense. Of course, we can
say that a polynomial fpxq and fpxq ` 1 are consecutive since their differ-
ence is 1, which turns out to be another (very peculiar) polynomial (i.e. the
multiplicative unit of the ring). Nonetheless, if we use, for a moment, the
classic analogy establishing that the affine space A1

k corresponds (or can be
partially identified) with the ring of coordinates krxs via the well-known cor-
respondence of points (given rise to directions or vectors) going to maximal
(principal and non-zero in dimension one) ideals; then, we can understand a
polynomial to be a kind of specific direction (or polynomial direction). In this
intuitive correspondence one advances in the direction of ppxq by consider-
ing integer positive multiples of the form 2ppxq, 3ppxq, 4ppxq, . . . and one goes
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backwards with respect to the direction ppxq if one considers negative multi-
ples of the form ´ppxq,´2ppxq,´3ppxq, . . . In this way, the classic arithmetic
notion of being consecutive to an element corresponds to the trivial polyno-
mial direction ppxq “ 1. Having this in mind let us establish formally our next
theorem.

Theorem 5.2 (Extension of the Green-Tao Theorem for Polynomial Rings in
Characteristic Zero). Let S be either Zrx1, . . . , xns, with n ě 1 or Krx1, . . . , xms,
where K is a field of characteristic zero and m ě 2. Then, in S there exist ar-
bitrarily long arithmetic progressions tbpxqp´q ` apxqu going in any (vectorial)
direction consisting entirely of primes (i.e. irreducibles). Even more, one can
choose the polynomial bpxq of arbitrarily large degree on any variable xi.

Proof. First, let us choose a fixed vectorial direction ppxq P Szt0u, and a length
l P N. Let us fix an arbitrary polynomial apxq P S being coprime with all the
polynomials ppxq, 2ppxq, . . . , kppxq (this is always possible because S is an
UFD with infinitely many primes). Now, set w “ l in Theorem 1.2. So, by the
former choice of apxq we have, keeping in mind Remark 1.1, that the polyno-
mials Pkpxq :“ apxq ` k ¨ ppxqy are all irreducible in Srys for k “ 1, . . . , w.
Thus, by Theorem 1.2 there exists a polynomial M “ bpxq of arbitrarily large
degree in any fixed variable xj such that all the polynomials

apxq ` ppxqbpxq, apxq ` 2 ¨ ppxqbpxq, . . . , apxq ` w ¨ ppxqbpxq

are irreducible (i.e. prime) in S. But this means exactly that the arithmetic
polynomial progression of length w

apxq ` ppxqbpxq, apxq ` 2 ¨ ppxqbpxq, . . . , apxq ` w ¨ ppxqbpxq

consists entirely of prime elements, finishing our proof. □

An even stronger result is true in this context with coefficients in a field,
namely, that the former theorem remains true when we allow to perform not
only ‘regular’ steps of multiples of the vectorial direction, but also we allow to
make ‘irregular’ steps with an additional coprime vectorial variation at each
(amplified) stage.

Theorem 5.3 (Polynomial Extension of the Green-Tao Theorem in Character-
istic Zero with coprime irregular steps). Let S “ Krx1, . . . , xms, where K is a
field of characteristic zero and m ě 2. Then, for any vectorial direction ppxq P

Szt0u, and any arbitrarily large sequence of irregular coprime fluctuations of the
vectorial steps given by a sequence of polynomials a1pxq, . . . , alpxq P S all being
coprime with vectorial direction ppxq, there exists a sort of irregular arithmetic
progression Aip of the form bpxqp´q ` a1pxq, . . . , bpxqp´q ` alpxq; for a suit-
able bpxq P S, such that the irregular path in the direction of ppxq (multiplied
by bpxq, i.e., amplified by bpxq) along Aip consists exactly of l primes (or prime
steps). Even more, one can choose the polynomial bpxq of arbitrarily large degree
on any variable xi.
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Proof. As before, set w “ l as in Theorem 1.2. So, by Remark 1.1 the polyno-
mials Pipxq :“ aipxq`i ¨ppxqy are all irreducible in Srys for i “ 1, . . . , w, since
our field has characteristic zero and ppxq is coprime with all the aipxq. Then,
by Theorem 1.2 there exists a polynomial M “ bpxq of arbitrarily large degree
in any fixed variable xj such that all the polynomials a1pxq`ppxqbpxq, a2pxq`

2 ¨ ppxqbpxq, . . . , awpxq `w ¨ ppxqbpxq are irreducible (i.e. prime) in S. In other
words, the arithmetic polynomial progression of length w

a1pxq ` bpxqrppxqs, a2pxq ` bpxqr2 ¨ ppxqs, . . . , awpxq ` bpxqrw ¨ ppxqs,

which is the irregular path in the direction of ppxq (amplified by multiplication
with bpxq) along Aip, consists exactly of w “ l primes. □
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