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Introduction

There are two main sources for producing and doing research in mathe-
matics:

First, by finding and analyzing good examples, from which we get the
main intuitions for establishing and proving conjectures. On this approach
the examples turn out to be as important as theorems, and sometimes they
are the “down-to-earth” versions of the theorems, and they clarify, as well, the
need for imposing technical conditions to the general propositions. Sometimes
good examples are as valuable as good theorems. In fact, they can have a big
influence in a whole theory.

A good instance of that is the counterexample to the localization problem
in commutative algebra given by H. Brenner and P. Monsky (see [6]), which
settled a fundamental question in one of the most important theories of com-
mutative algebra: Tight Closure (see [25]). Since the invention of the theory
in the late 80s, the question of determining if this particular closure operation
commutes with localization was on the basis of the subsequent research. How-
ever, neither the creators nor the purely commutative algebrists came with
the solution to this problem. In fact, the main intuitions for finding the coun-
terexample came from geometry. Specifically, from the work of H. Brenner
relating vector bundles and torsors (see [3]). His work is rich of examples and
geometrical and homological intuitions of the algebraic phenomena.

In this particular case, an specific example turned out to be as important
as a whole abstract theory. In fact, after the acceptance of the counterex-
ample in the mathematical community the horizon in tight closure theory
has changed. Particularly, the new directions are going to create new theo-
ries to go further. For example, to create theories of closure operations that
“commute with localization” (see [12]).

Secondly, there is a way of looking for the general reasons of the mathe-
matical phenomena. Instead of searching for particular examples we consider
at the same time different kinds of abstract theories as specific instances to
work with, and we try to find common properties among them in order to
create new even more abstract theories which have the former theories just as
particular examples.
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6 INTRODUCTION

One important instance is the modern abstract algebraic geometry, where
the very fundamental definition to consider i.e., the notion of scheme, involves
intuitions and notions coming from differential topology, as well as from the
theory of sheaves, and from commutative algebra. One of the brightest expo-
nent of this way of thinking is Alexander Grothendieck, whose main philoso-
phy of solving a mathematical problem could be explained as creating a whole
and suitable mathematical environment for the problem (i.e. an appropriate
theory) in such a way that the solution of the problem follows naturally from
the adequate definitions and formal constructions. A classical example of that
is the Grothendieck-Riemann-Roch Theorem (see [11]). In comparison with
the former way this goes on the other direction, since instead of looking for
an specific example to get intuition about the problem in consideration i.e.,
going from the micro-evidence to reach the general patterns describing the
desired solution, we look for a suitable global instance in order to derive our
particular problem just as a natural and specific example of a “big” formal
construction.

These two ways of doing mathematical research have been very successful,
although the modern mathematic tendency goes more on the second direction.

In this thesis we go, in a very modest way, through these two possible
forms of doing mathematics.

First, we work with a very natural object in commutative algebra: the
forcing algebras. We consider a commutative ring with unity R, a finitely
generated I = (f1, ..., fn) ⊆ R and another arbitrary element f ∈ R. An
important question, not only from the theoretical, but also from the compu-
tational point of view is to determine if f belongs or not to I (or, in general.
to some closure operation on I, such as the radical, or the tight closure, among
others). Sometimes, we try to determine in a well defined way how “close”
f is from belonging to I. One possible formal way to approach this question
is by finding another suitable R−algebra A such that f belongs to the corre-
sponding expansion of I in this algebra i.e., f ∈ IA. Specifically, we need to
know if there exist elements t1, ..., tn ∈ IA, such that f = f1t1 + · · ·+ fntn. A
simple and elegant possibility to find such an algebra is by formally “forcing”
the former equation i.e., by defining the desired coefficients just as formal
variables Ti, and dividing the ring of polynomials over R on these variables
by the “forcing” equation f1T1 + · · ·+ fnTn − f . Specifically, we consider the
“forcing algebra”

A = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f) ,

with data f, f1, ..., fn ∈ R. Originally the notion of forcing algebra appeared
in the work of M. Hochster on Solid Closure (see [23]). It turns out that
we can translate the fact that f belongs to I or to some closure operation of
I in terms of verifying specific algebraic as well as topological properties of
the corresponding forcing algebra and the corresponding “forcing morphism”



INTRODUCTION 7

ϕ : Y := SpecA→ X := SpecR, induced on the corresponding affine schemes
by the natural homomorphism i : R → A. We describe in very general
terms the most important examples of this correspondence regarding the most
important closure operations in commutative algebra (Ch. 1, §2).

Although forcing algebras involve the most elementary and simple system
of equations, i.e. linear equations, they have lots of interesting nontrivial
properties. However, they have been seldom studied as an subject on their
own. On the other hand, studying forcing algebras is, in a general sense,
studying linear algebra, but not only over an arbitrary commutative ring, but
also carrying the topological, geometrical and homological structure of the
involved system of linear equations, which is, clearly an interesting topic on
its own. So, we do this in a modest and specific way in the first three chapters
of this thesis.

Particularly, we study the case corresponding to a submodule N of a
finitely generated module M and an arbitrary element s ∈ M . This case
corresponds to forcing algebras with several forcing equations

A = R[T1, . . . , Tn]/

〈 f11 . . . f1n
...

. . .
...

fm1 . . . fmn

 ·
 T1

...
Tn

+

 f1
...
fm

〉 .
Even very basic properties of forcing algebras are not yet understood, and

these thesis deals to a large extension with these questions.
For example, we describe how to perform elementary row and column

operations on the forcing algebra by means of considering elementary affine
linear isomorphisms and an specific relation between the regular sequences
of forcing elements and the fitting ideals of the corresponding forcing matrix
(Ch. 1, §3).

Further, the connectedness of the spectrum Y of the forcing algebra can
be essentially described by means of the “vertical” and “horizontal” compo-
nents regarding the forcing morphism ϕ. And, in lower dimensions, the role
of the horizontal component becomes even more important (Ch 2, §2-3). Fur-
thermore, if our base ring is a unique factorization domain (UFD), then a
purely arithmetical condition is sufficient to guarantee the connectedness of
the forcing algebra, and on the principal ideal domain it becomes necessary
too. Moreover, if we move to Dedekind domains then, under mild conditions,
the connectedness of Y is translated exactly as the belonging of f to I (Ch 2,
§4).

On the other hand, regarding connectedness as a local property over the
base X, a quite general result holds: for any arbitrary homomorphism of rings
α : R→ A, to guarantee the connectedness of SpecA, it is sufficient to prove
the local (over the base) connectedness of it i.e., to verify that SpecARrp is
connected for any p ∈ SpecR. However, we show with an example coming
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from forcing algebras that the converse of this fact does not hold. However,
the local connectedness is equivalent to the global one in the case of forcing
algebras over a noetherian one dimensional domain (Ch 2, §5). Being in the
integral closure could be completely characterized by the universal connect-
edness of the forcing morphism, and, in particular, when a fraction is integral
over a noetherian domain (Ch. 2, §6). All of these previous results are ex-
plained not only with formal proofs but also with simple and rich examples.

The irreducibility of the forcing algebra over a noetherian domain can be
obtained just by assuming that the height of I is bigger or equal that 2 (Ch
3, §1).

Now, we show with two kinds of examples that for the reducedness of the
forcing algebras is not enough to have the reducedness of the base. Besides,
as a natural consequence of studying this and doing very elementary consid-
erations we see that a noetherian ring is the product of fields if and only if
any element belongs to the ideal generated by its square power (Ch. 3, §1).
Moreover if we add to the condition the possibility that I is the whole base R,
then we get a complete characterization of the integrity of the forcing algebra
over UFDs (Ch. 3, §3).

With a very natural approximation through simple examples and increas-
ing just step by step the dimension of the base space we obtain, in the case
that our base is the ring of polynomials over a perfect field, a quite simple
criterion of normality for the forcing algebras by means of the size of the
codimensions of the ideal I and the ideal I + D, where D is generated by
the partial derivatives of the data. In the case that we are working over an
algebraic closed field and our base is the ring of coordinates of an irreducible
variety X, the normality of the (forcing) hyperplane defined by the forcing
equation can be characterized by imposing the condition that the codimension
of the singular locus of X in the whole affine space is a least three (Ch 3, §4).
Here, it is worth to know that we present the formal proof of this criterion as
well as the “informal” way in which this criterion was originally found i.e., a
way of analyzing simple examples increasing gradually the generality of the
variables describing them, in order to develop slowly a deeper intuition of the
phenomenon involved. We suggest by working on this criterion and going for
a moment to the philosophy of mathematics, the possibility to combine the
two former approaches in a common way consisting of creating and develop-
ing a “theory of examples” in mathematics. Where we consider examples as
our formal objects, and we try to formalize the notion of rich examples and
how they can “converge” to other more general examples or theorems, and
lastly, how we can visualize each particular collection of topics or theories in
mathematics just as specific and suitable examples to work with.

As an instance of the importance of the examples we analyze an specific
forcing algebra, that we call the “enlightening” example, because it is a very
natural recurring point to verify the different results that we have already
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studied. On this respect this example is not less important that the for-
mer results. Instead of that, it is another valuable result where the different
propositions and theorems come together (Ch. 3, §5).

Moreover, we compute explicitly the normalization of a forcing algebra
coming from the examples guiding us to find the normality criterion. And
again, on that process we deal with very elementary and fundamental ques-
tions dealing with normal domains and denominators ideals (Ch. 3 §6).

In the second part of this thesis we study one of the most important
homological conjecture: The Direct Summand Conjecture (DSC), which states
that if R ↪→ S is a finite extension of rings and R is regular then R is a direct
summand of S as R−module, or, equivalently, this extension splits as a map
of R−modules i.e. there exists a retraction or R−homomorphism ρ : S → R
sending 1R to 1S . We discuss very briefly the state of the art of this conjecture
and its equivalent version, the Monomial Conjecture stating that if (R,m) is
a local ring of dimension d and {x1, ..., xn} a system of parameters, then for
any t ∈ N we have

(x1 · · ·xd)t /∈ (xt+1
1 , ..., xt+1

d ).

Clearly, this form of the DSC goes into the direction of looking for a coun-
terexample, (Ch.1 §4).

On the other hand, J. D. Vélez, in his former work has reformulated the
DSC conjecture in terms of the existence of annihilators of zero divisors on
Gorenstein local rings not belonging to ideals of parameters (Ch. 4, §3-4).
Based on these results we find a new conjecture equivalent to the DSC (in its
weak form) (Ch. 4 §6). It states in its strong form that if (T, η) is a Gorenstein
local ring of dimension d and {x1, ..., xd} ⊆ T is a system of parameters and
writing Q = (x1, ..., xd), then for any zero divisor z ∈ T and any lifting u ∈ T
of a socle element in T/Q (i.e. AnnT/Q(η̄) = (ū)) then

u · z ∈ Q · (z).

This (a little bit technical) condition allows for much more flexibility to
make computations on particular examples than the original statement of the
DSC. We call this conjecture the Socle-Parameters Conjecture (Strong Form)
(SPCS). The SPCS is at the same time equivalent to a very general and
homological condition involving the lengths of the Koszul homology groups
i.e., to saying that

`(H0(x, T/(z)))− `(H1(x, T/(z))) > 0.

Note that the condition involved is, in some respects, more suitable to be
generalized in a brighter mathematical context beyond commutative algebra,
because it essentially involves homological estimates, which at the same time
can be rewritten by means of the Euler characteristic or by the multiplicity
of the ring T/(z). Besides, the main ring in question is a Gorenstein ring
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which is basically defined by an homological property i.e., having finite in-
jective dimension. In virtue of that we get a new and brighter horizon over
the DSC, which allows us to find a new proof of the DSC in the positive
equicharacteristic case (Ch. 4, §7). Besides, both conditions together with
a theorem of Ikeda (see [26, Corollary 1.4]), helps us to show the SPCS for
multiplicities of T smaller or equal than two, suggesting a natural induction
as a way of solving the conjecture (Ch. 4, §8). In chapter 4 we argue more
with general abstract arguments than with specific examples, so we go more
into the second way of doing mathematics.

Finally, we turn again to the elementary examples and prove the DSC for
finite extensions S of UFDs generated by two elements satisfying quadratic
radical equations, and, on the way, we prove an interesting and more general
fact characterizing when rings of the form

R[T1, T2](f1(T1), f2(T2)),

are integral domains, where R is also a domain and f1, f2 are monic poly-
nomials (Ch. 5, §1). Besides, by imposing a couple of arithmetical conditions
on the coefficients and on the discriminants of the polynomials who have as
root the generators of S as R−module we proof also the DSC for non-radical
quadratic extensions (Ch. 5, §2).
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Axel Stäbler, Alessio Caminata, Florian Strunk, Inga Heudtlass, Nguyen Dan
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CHAPTER 1

Fundamental Definitions and Results

1. Basic Definitions and Results

A local ring R (or (R,m, k)) is a Noetherian ring with a unique maximal
ideal m and residue class field k = R/m. The characteristic of R is the
minimal positive integer r such that r · 1 = 0, that is, the positive generator
of the kernel of the natural homomorphism from Z to R sending 1 to 1. If
this homomorphism is injective, we define the characteristic of R as zero. We
say that R is equicharacteristic if charR = chark = p, with p ≥ 0. It is an
elementary fact that R contains a field if and only if R is equicharacteristic.
We say that R is mixed characteristic if chark = p and charR = pα (α 6= 0),
here p > 0 because if chark = 0. Then charR = 0. It is elementary to
see that the characteristic of a local ring can only be zero or a power of the
characteristic of its residue field.

As usual k (or K) shall denote an arbitrary field, except it is explicitly
otherwise defined.

If M is an R−module, then an element x ∈ R is a zerodivisor on M
if there exists a nonzero element a ∈ M such that xa = 0. A sequence
x1, ..., xn ∈ R is a regular sequence for M (or an M − sequence) if xi is a
nonzero divisor in M/(x1, ..., xi−1)M for i = 1, ..., n and (x1, ..., xn)M 6= M .
For R Noetherian, M finitely generated R−module and I ⊆ R and ideal such
that IM  M , the length of a maximal regular sequence on M contained in
I is a well defined integer called the depth of M in I or the I − depth and
denoted by depth(I,M) (see [30, Theorem 16.7]). If IM = M . Then, by
definition, depth(I,M) = +∞.

An R−module M is projective if the functor HomR(M,−) is exact (i.e.
preserves short exact sequences). A sequence

...→ Pi
di−→ Pi−1 → ...→ P1

d1−→ P0
d0−→M → 0

is a projective resolution of M , if each Pi is a projective R−module and
ker(di) = im(di−1). If there exists some N ∈ N such that Pi 6= 0 for all
i = 0, ..., n and Pn+1 = 0, then n is called the length of this resolution.
Otherwise, we say that this length is infinite. The projective dimension of
M , denoted by pdRM , is defined as the infimum of the lengths of projective
resolutions of M . In the case that there is no such projective resolution we

11



12 1. FUNDAMENTAL DEFINITIONS AND RESULTS

write pdRM = +∞. Let (R,m) be a local ring an M be a finitely generated
R−module with pdRM < +∞. Then the Auslander-Buchsbaum formula
states that pdRM = depth(m,R)− depth(m,M) (see [10, Theorem 19.9]).

The Krull dimension of a ring S, denoted by dimS, is the supremum of
n such that there exists P0 ( P1 ( ... ( Pn, where each Pi is a prime ideal of
S. Besides, the height of a prime ideal P of S, or codimension of P at S is
defined by codim(P, S) = htP := dimRP . The height, or codimension, of an
arbitrary ideal I, is defined as the infimum of the heights of the minimal prime
ideals of I. We will denote this number by codim(I, S), emphasizing that our
ideal is contained in the ring S. One can also define the notion of codimension
of closed subset within a topological space (see [17, p. 86]), coinciding with
the former one in the case that R is identified with the affine scheme SpecR,
consisting of the prime ideals of R with Zariski topology, i.e., the closed subset
are of the form V (J), for some ideal J ⊆ R, and consist of the prime ideals
containing J . In conclusion it holds codim(V (I),SpecR) = codim(I,R) (for
further readings see [17]).

If M is an R−module then dimM := dim(R/AnnRM). Another impor-
tant fact that we use is that dim(R[x1, ..., xn]) = dimR+n, for any Noetherian
ring (see [30, Theorem 15.4]).

A ring R is catenary if any saturated chain of primes between any two
prime ideals P and Q, with P ⊆ Q, have the same length. And R is uni-
versally catenary if any finitely generated R−algebra is catenary. The di-
mensions of quotients of catenary domains behave quite natural. Specifically,
dimR/I = dimR − htI for any ideal I ⊆ R (see [10, p. 290]). The most
common example of a universally catenary ring is an affine domain, i.e. a
finitely generated k−algebra, which is an integral domain (see [10, Corollary
13.6.]). In fact, let I be an ideal of an affine domain T = k[x1, . . . , xr]/P ,
where P is a prime ideal of k[x1, . . . , xr] and k is an arbitrary field, then

dim(T ) = tr.degkK(T ) = dim(T/I)− ht(I).

Moreover, dim(T ) is the length of every maximal chains of primes in T
(see [10, Theorem A, p. 290]). We use this result particularly oft in Chapter
3.

If (R,m, k) is a local ring and M is a finitely generated R−module, then
M is called Cohen-Macaulay (C-M) if depth(I,M) = dimM . In the case that
R is itself a C-M R−module, we say that R is a C-M ring. Globally, the C-M
notion is defined if the C-M condition holds in every localization on prime
ideals. Moreover, a local ring R is C-M if and only if one (therefore any) sys-
tem of parameters x1, ..., xd ∈ R (i.e. Rad(x1, ..., xd) = m, and dimR = d) is
a regular sequence on R (see[30, Theorem 17.4.]). Finally, any local C-M ring
(R,m) is equidimensional, (i.e. the heights of all maximal ideals are the same
and for any minimal prime P ⊆ R, the dimensions of R/P are the same) and
the associated primes are minimal (see [10, Corollary 18.10, Corollary 18.11]).
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A ring R is called Dedekind domain if is a Noetherian domain of dimension
one such that any localization on nonzero prime ideals are discrete valuation
rings, i.e. local principal ideal domains.

Let (R,m) be a local ring, one form of the well known Lemma of Nakayama
is the following: Let N ⊆M be R−modules such that M/N is finitely gener-
ated and M = N +mM , then M = N (see [30, Corollary p.8]).

A theorem of Krull says that on a Noetherian ring a prime ideal P has
height n if and only if it is minimal over an ideal generated by n elements
(see [10, Theorem B, p. 224]). A local ring R is regular if the minimal num-
ber of generators of the maximal ideal, µ(m) = dimk(m/m2), (by Lemma of
Nakayama) is exactly the Krull dimension of R. In general, by Krull’s theo-
rem µ(m) ≥ dimR. Any regular local ring is a UFD, and then, in particular, a
normal domain, i.e. coincides with its integral closure on its field of fractions
(see [10]). Besides, regular local rings are C-M (see [10]). A noetherian ring
is regular is its localizations at prime ideals are regular local rings. Finally, if
R is a regular ring, then R[x1, ..., xd] so is (see [30, Theorem 19.5])

A local ring R is Gorenstein if it is C-M and for one (therefore any) system
of parameters {x1, ..., xn} ⊆ R the dimension of the socle AnnR/(x1,...,yn)(m)
is one as a k−vector space. A generator of the socle is called a socle element.
For equivalent definitions (see [30, Theorem 18.1.]).

Let M be an R−module. Let J be a directed system and {Mj}j∈J a fam-
ily of submodules of M such that if s ≥ r, then Ms ⊆ Mr. The completion

of M with respect to this family is defined by M̂ := lim←−M/Mj . If J = N
and Mj = IjM , where I ⊆ R is an ideal, then M̂ is the completion of M
with respect to I (or I−adic completion). R is complete with respect to I, if
the natural homomorphism from R to the I−adic completion of R sending r
to (r) is an isomorphism. A local ring (R,m, k) is complete if it is m−adic
complete. For example, if mn = 0 for some n ∈ N, then R is complete. In
general, taking completion preserve (sometimes in both directions) a lot of
useful properties of R such that the Krull dimension, depth, regularity, and
being C-M, among others. For further reading see [30] and [10].

A local ring (R,m) is unmixed if its completion R̂ is equidimensional (see
[29, p. 247]).

An R−module M is flat if −⊗M preserves short exact sequences, which
is equivalent to saying that it preserves injectivity, since it is elementary to see
that tensoring with an arbitrary module is a right exact functor. Let M,N
be R−modules. The functor TorRn (N,M) is defined by fixing any projective
resolution of M or N , tensoring with the other module and taking homology.
This module is well defined up to isomorphism. We will need the following
two facts: if one of the factors is flat as an R−module, then TorRn (N,M) = 0
for n > 0. The other fact is that for any short exact sequence

0→ A→ B → C → 0,



14 1. FUNDAMENTAL DEFINITIONS AND RESULTS

there exists a long exact sequence

· · · → TorRi+1(C,M)
δi−→ TorRi (A,M)→ TorRi (B,M)→ TorRi (C,M)

δi−1−−−→ · · ·

TorR1 (C,M)
δ0−→ A⊗M → B ⊗M → C ⊗M → 0

(see [30, Appendix B, p. 278]).
An R−module N is faithful if N ⊗R M = 0, implies M = 0 for any

R−module M . If R ↪→ R̂ is the natural extension of a local ring (R,m, k) to
its completion then, it is a faithfully flat extension (see [30, p. 63]).

An extension of rings R ↪→ S is finite (or module-finite) if S is a finitely
generated R−module. If R ↪→ S is an integral extension of rings then by the
going up (see [10, Proposition 4.15]) dimS = dimR. Since finite extensions
are integral, the same holds in that case. In general, a ring homomorphism
h : R → S is finite, if h(R) ↪→ S is a finite extension. We say that h splits if
there exists a R−module homomorphism ρ : S → R such that ρ ◦ h = idR,
or what is the same, ρ is R−linear (S consider as an R−module via h) and
ρ(1) = 1.

A generalization of the “Nullstellensatz” (see [10]) tells us that the ring of
polynomials over an arbitrary field is a Jacobson ring. That means, it is a ring
such that any prime ideal is an intersection of maximal ideal, or equivalently,
any prime ideal is exactly the intersection of all the maximal ideals containing
it.

A ring R is Artinian if any descending chain of ideals stabilizes, which
is equivalent to saying that R is a Noetherian ring of dimension zero (see
[1, Theorem 8.5.]). It is also true that Artinian rings have finitely many
maximal ideal, saying {m1, ...,mr}. In this case R is naturally isomorphic to
Rm1 × ...×Rmr (see [1, Theorem 8.7.]).

Let R be a commutative ring with unity and {x1, ..., xn} ⊆ R a sequence
of elements of R. If p < 0, let Kp = 0. If p = 1, ..., n, define

Kp = ⊕iRei1,..,ip ,

where i = (i1, ..., ip) and 1 ≤ i1 < i2 < ... < ip ≤ n; and finally K0 = R. Let
dp : Kp → Kp−1 defined by

ei1,...,ip →
p∑
j=1

(−1)jei1,...,îj ,...,ip .

Now, it is elementary to see that K• define a complex of R−modules, i.e.,
dp ◦ dp−1 = 0. The Koszul homology is defined by

Hr(x,R) := hr(k•) = ker(dr)/im(dr+1).

If M is an R−module then Hr(x,M) := hr(M ⊗K•). One of the most useful
properties of the Koszul homology is the following fact: Let (R,m) be a local,
I = (x1, ..., xn) ⊆ R an ideal, M a finitely generated R−module and define



1. BASIC DEFINITIONS AND RESULTS 15

µ = sup{r : Hr(x,M) 6= 0}. Then, depth(I,M) = n − µ (see [30, Theorem
16.8]).

A composition series for an R−module M is a sequence M0 = (0) (M1 (
... ( M` = M , such that Mi/Mi−1 is a simple R−module. If a composition
series exists, then any two of them have the same length, which is called the
length of M and it is denoted by `(M). Otherwise, we define `(M) = +∞.
Moreover, `(M) < +∞ if and only if M satisfies both the ascending and de-
scending chain conditions. In particular, Artinian rings have finite length as
modules over themselves. Finally, `(−) is additive on short exact sequences.
For further reading see [30, Chapter 6].

Let R be an N−graded ring such that R0 is an Artinian ring and such
that R is finitely generated as an R0−algebra. Let M be a finitely generated
R−module of dimension d. Then it is elementary to see that each homo-
geneous part Mn is a finitely generated R0−module and therefore has finite
length (see [1, Proposition 6.5.]). Besides, there exists a unique polynomial

pM (t) = ad−1t
d−1 + · · ·+ a0 ∈ Q[t]

of degree d − 1, which is called the Hilbert polynomial, such that for n � 0,
pM (n) = `(Mn). The multiplicity of M , e(M), is defined as `(M) if d = 0,
and as (d− 1)!ad−1, if d > 0 (see [7, Definition 4.1.5.]. In particular, if M has
positive dimension, then e(M) > 0, since ad−1 > 0. For the local case, assume
that (R,m) is a local ring, M a finitely generated R−module of dimension
d and I = (x1, ..., xn) is an ideal of definition of M . This last condition
means that mrM ⊆ IM for some r > 0, which is equivalent to saying that
x = x1, · · · , xn is a multiplicity system on I (i.e. `(M/(x1, ..., xn)M) < +∞)
(see [7, p. 185]). We define the filtered graded ring grIR = ⊕+∞

i=0 I
i/Ii+1, and

the filtered graded module grIM = ⊕+∞
i=0 I

iM/Ii+1M , where I0 = R. Then,
grIR is in a natural way a graded ring (here R/I is Artinian, because after
reducing to the case AnnRM = 0, it is easy to see that `(M/IM) < +∞
if and only if radI = m). Therefore we can define the multiplicity of M on
I, e(I,M) := e(grIM) (see [7, p. 180]) and the multiplicity of R, e(R) :=
e(m,R) (see [30, p. 108]). In particular, we can define the multiplicity of M
on I = (x1, ..., xn), where x1, ..., xn ∈ R is a system of parameters of M , i.e.
n = dimM and M is Artinian, i.e. satisfied the descending chain condition
for submodules (see [1, p. 74]). Besides, under the former hypothesis and
assuming that x = x1, · · · , xn is a multiplicity system of M , we can define the
Euler Characteristic as

χ(x,M) :=

n∑
i=0

(−1)i`(Hi(x,M)).

For a more technical reformulation of this notion due to Auslander and
Buchsbaum, see [7]. Now, a theorem of Serre (see [7, Theorem 4.6.6.]) states
that χ(x,M) = e(I,M), if {x1, ..., xN} ⊆ R is a system of parameters for M
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and zero otherwise. In particular, if {x1, ..., xn} ⊆ R is a system of parame-
ters for M and dimM > 0, then χ(x,M) = e(I,M) = e(grIM) > 0, because
dimM = dim(grIM) (see [7, Theorem 4.4.6.]).

Now, we review the notion of a coefficient ring: If (R,m, k) is equichar-
acteristic, a coefficient field is a field K0 ⊆ R such that the natural projec-
tion π : K0 ⊆ R ↪→ R/m = k is an isomorphism. On the other hand, let
(R,m, k) be a complete quasi-local (that means with a unique maximal ideal
m but not necessarily Noetherian), mixed characteristic, and separated ring
(i.e. ∩n∈Nmn = (0)). Then a coefficient ring for R is a sub-ring (D, η) ↪→ R
such that it is complete, local, dimD ≤ 1, m ∩D = η, and the inclusion in-
duces an isomorphism D/η ∼= R/m. It is elementary to see that if charR = 0,
and chark = p > 0, then D is a domain, and therefore one dimensional, that
means exactly that (D, η) is a discrete valuation domain (DVD). A theorem
of I. S. Cohen states that for complete local rings, there always exists a coef-
ficient ring (see [8, Theorem 9, Theorem 11] and [19, p. 24]). In fact, in the
mixed characteristic case (chark = p > 0) there exists coefficient rings which
are DVD-s (D, pD, k), with local parameter p, or D/pmD, when charR = pm

(see [19, Corollary p. 24]).
Let

0→ A
i−→ B

π−→ C → 0

be a short exact sequence of R−modules. It is elementary to prove the equiv-
alence of the following facts:

(1) A is a direct summand of B via this exact sequence. That means
that there exists an R−isomorphism θ : B → A ⊕ C inducing an
isomorphism of short exact sequence with the canonical sequence
0→ A→ A⊕ C → C → 0, with the identity on A and C.

(2) There is a retraction (or splitting R−homomorphism) ρ : B → A,
i.e. ρ ◦ i = IdA.

(3) There exists an R−homomorphism α : C → B such that α◦π = IdC .
(4) The induced R−homomorphism θ : HomR(C,B) → HomR(C,C)

given by β → β ◦ π is surjective.

In particular, if R ↪→ S is a ring extension and the previous conditions hold
for the naturally induced short exact sequence 0 → R → S → S/R → 0,
then we say that this extension splits. Note that if R ↪→ R′ is a faithfully flat
extension, then R ↪→ S splits if and only if R′ ↪→ R′⊗R S splits. In fact, since
for flat extensions tensor products commutes with the functor Hom (see [2,
§2, No. 10, Proposition 11]), it is elementary to see that HomR(S/R, S) →
HomR(S/R, S/R) is surjective if and only if HomR′((R

′ ⊗ S)/R′, R′ ⊗ S) →
HomR′((R

′⊗S)/R′, (R′⊗S)/R′) is surjective, which means that R′ ↪→ R′⊗S
splits.

Remark 1.1. Let R be a commutative ring and B = R[T1, . . . , Tn] the
polynomial ring in n variables. Let P be a prime ideal of R, then for the
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expansion of P in B, say PB, holds htPB ≥ htP . In fact, if P0 $ P1 $, . . . ,$
Pr = P is a saturated chain of primes in R contained in P , then P0B $ P1B $
, . . . ,$ PrB = PB is a saturated chain of primes in B, since the quotients
B/PiB u (R/Pi)[T1, . . . , Tn] are all different integral domains, due to the fact
that the functor −⊗R R[T1, . . . , Tn] is faithfully flat (since R[T1, . . . , Tn] is a
free R−module) and tensoring the exact sequence of R−modules

0 −→ Pi/Pi−1 −→ R/Pi−1 −→ R/Pi −→ 0

we obtain the exact sequence:

0 −→ PiB/Pi−1B −→ B/Pi−1B −→ B/PiB −→ 0,

so PiB/Pi−1B 6= 0.

We state explicitly the statement of the Jacobian Criterion and a corollary
of it, which we use in the proof of our normality criterion in Chapter 3, for
proofs see [10, Theorem 16.19, Corollary 16.20].

Theorem 1.2. (Jacobian Criterion). Let S = k[x1, . . . , xr] be a polyno-
mial ring over a field k, let I = (f1, . . . , fs) be an ideal, and set R = S/I.
Let P be a prime ideal of S containing I and write k(p) = K(R/P ) for the
residue class field at P . Let c the codimension of Ip in Sp.

(1) The Jacobian matrix J = (∂fi/∂xj), taken modulo P , has rank ≤ c.
(2) If charK = p > 0, assume that k(P ) is separable over k. RP is a

regular local ring if and only if the matrix J , taken modulo P , has
rank = p.

Corollary 1.3. Let R[x1, . . . , xr]/I be an affine ring over a perfect field
k and suppose that I has pure codimension c, i.e., the height of any minimal
prime over I is exactly c. Suppose that I = (f1, . . . , fn). If J is the ideal
of R generated by the c× c minors of the Jacobian matrix (∂fi/∂xj), then J
defines the singular locus of R in the sense that a prime P of R contains J if
and only if RP is not a regular local ring.

Now we present the statement of Serre’s Criterion for normality for any
Noetherian ring (see [10, Theorem 11.2.]). Let us recall that a ring is normal
if it is the direct product of normal domains:

Theorem 1.4. A Noetherian ring S is normal if and only if the following
two conditions holds:

(1) (S2) For any prime ideal P of S holds

depthP (SP ) ≥ min(2,dim(SP )).

(2) (R1) Every localization of S on primes of codimension at most one
is a regular ring.

Sometimes we will use the phrase “previous comments” or “previous re-
sults”, to refer, among other things, the results stated here.
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2. Forcing algebras

Let R be a commutative ring, I = (f1, . . . , fn) a finitely generated ideal
and f an arbitrary element of R. As mentioned in the introduction, a very
natural and important question, not only from the theoretical but also from
the computational point of view, is to determine if f belongs to the ideal I or
to some ideal closure of it (for example to the radical, the integral closure, the
plus closure, the solid closure, the tight closure, among others). To answer
this question the concept of a forcing algebra introduced by Mel Hochster in
the context of solid closure [23] is important (for more information on forcing
algebras see [4], [5]):

Definition 1. Let R be a commutative ring, I = (f1, . . . , fn) an ideal
and f ∈ R another element. Then the forcing algebra of these (forcing) data
is

A = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f) .

Intuitively, when we divide by the forcing equation f1T1 + . . .+ fnTn + f
we are “forcing” the element f to belong to the expansion of I in A. Besides,
it has the universal property that for any R-algebra S such that f ∈ IS, there
exists a (non-unique) homomorphism of R-algebras θ : A→ S.

Furthermore, the formation of forcing algebras commutes with arbitrary
change of base. Formally, if α : R→ S is a homomorphism of rings, then

S ⊗R A ∼= S[T1, ..., Tn]/(α1(f1)T1 + · · ·+ αn(fn)Tn + α(f))

is the forcing algebra for the forcing data α(f1), . . . , α(fn), α(f) . In par-
ticular, if p ∈ X = SpecR, then the fiber of (the forcing morphism) ϕ :
Y := SpecA → X := SpecR over p, ϕ−1(p), is the scheme theoretical fiber
Spec(κ(p) ⊗R A), where κ(p) = Rp/pRp is its residue field. In this case, the
fiber ring κ(p) ⊗R A is the forcing algebra over κ(p) corresponding to the
forcing data f1(p), . . . , fn(p), f(p), where we denote by g(p) ∈ κ(p), the im-
age (the evaluation) of g ∈ R inside the residue field κ(p) = Rp/pRp. Also,

note that for any fi Afi
∼= Rfi [T1, ..., Ťi, ..., Tn], via the Rfi−homomorphism

sending Ti 7→ −
∑
j 6=i(fj/fi)Tj − (f/fi) and Tr 7→ Tr for r 6= i.

An extreme case occurs when the forcing data consists only of f . Then,
we define I as the zero ideal. Therefore A = R/(f).

Besides, if n = 1, then intuitively the forcing algebra A = R[T1]/(f1T1−f)
can be consider as the graphic of the “rational” function f/f1. We will explore
this example in more detail in chapter two.

By means of forcing algebras and forcing morphisms one can rewrite the
fact that the element f belongs to a particular closure operations of I. We
shall illustrate this now.

Firstly, the fact that f ∈ I is equivalent to the existence of a homomor-
phism of R−algebras α : A→ R, which is equivalent at the same time to the
existence of a section s : X → Y , i.e. ϕ ◦ s = IdX .
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Secondly, f belongs to the radical of I if and only if ϕ is surjective.
In fact, suppose that ϕ is surjective and let us fix a prime ideal p ∈ X
containing I. Then, ϕ−1(x) = Specκ(p) ⊗ A 6= ∅, that means, κ(p) ⊗ A =
κ(p)[T1, ..., Tn]/(f1(p)T1 + · · · + fn(p)Tn + f(p)) 6= 0. But, each fi(p) = 0,
since fi ∈ p, therefore f(p) is also zero, thus f ∈ p. In conclusion, f ∈
∩p∈V (I)p = rad I. Conversely, suppose that f ∈ rad I and take an arbitrary
prime p ∈ X. Then, if I is not contained in p, then some fj(p) 6= 0 and so
κ(p) ⊗ A 6= 0, that means ϕ−1(p) 6= ∅. Lastly, if I ⊆ p then f ∈ p, and
therefore κ(p) ⊗ A = κ(p)[T1, ..., Tn] 6= 0 and thus ϕ−1(p) = An−1κ(p) 6= ∅. In

conclusion ϕ is surjective.
Thirdly, let us review the definition of the tight closure of an ideal I

of a commutative ring R of characteristic p > 0. We say that u ∈ R be-
longs to the tight closure of I, denoted by I∗, if there exists a c ∈ R not
in any minimal prime, such that for all q = pe � 0, cuq ∈ I [q], where I [q]

denotes the expansion of I under the e−th iterated composition of the Frobe-
nius homomorphism F : R → R, sending x → xp. Tight Closure is one of
the most important closure operations in commutative algebra and was in-
troduced in the 80s by M. Hochster and C. Huneke as an attempt to prove
the “Homological Conjectures” (for more information [25]). Let (R,m) be
normal local domain of dimension two. Suppose that I = (f1, ..., fn) is an
m−primary ideal and f is an arbitrary element of R. Then, f ∈ I∗ if and
only if D(IA) = Spec A r V (IA) is not an affine scheme, i.e. is not of the
form Spec D for any commutative ring D (see [5, corollary 5.4.]).

Forth, the origin of the forcing algebras comes from the definition of the
solid closure, as an effort to defining a closure operation for any commutative
ring, independent the characteristic (see [23]). Explicitly, let R be a Noether-
ian ring, let I ⊆ R an ideal and f ∈ R. Then, f belongs to the solid closure
of I if for any maximal ideal m of R and any minimal ideal q of its comple-

tion R̂m, for the complete local domain (R′ = R̂m/q,m
′) holds that the d−th

local cohomology of the forcing algebra A′, obtained after the change of base
R ↪→ R′, Hd

m(A′) 6= 0, where d = dimR′ (see [3, Definition 2.4., p. 15]).
Fifth, let us consider an integral domain R and an ideal I ⊆ R. Then,

u belongs to the plus closure of I, denoted by I+, if there exists a finite
extension of domains R ↪→ S, such that f ∈ IS. If R is a Noetherian domain
and I = (f1, ...fn) ⊆ R is an ideal and f ∈ R, then f ∈ I+ if and only

if there exists an irreducible closed subscheme Ỹ ⊆ Y = Spec A such that

dim Ỹ = dimX, ϕ(Ỹ ) = X and for each x ∈ X, ϕ−1(x) ∩ Ỹ is finite (for an
projective version of this criterion see [3, Proposition 3.12]).

Finally, if R denotes an arbitrary commutative ring and I ⊆ R is an ideal,
then we say that u belongs to the integral closure of I, denote by I, if there
exist n ∈ N, and ai ∈ Ii, for i = 1, ..., n, with
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un + a1u
n−1 + · · ·+ an = 0.

We will prove in Chapter 2, §6 that f ∈ I, where I = (f1, ..., fn) ⊆ R,
if and only if the corresponding forcing morphism ϕ is universally connected,
i.e. Spec(S ⊗R A) is a connected space for any Noetherian change of base
R→ S, such that Spec S is connected.

From this we derive a criterion of integrity for fractions r/s ∈ K(R), where
R denotes a Noetherian domain, in terms of the universal connectedness of
the natural forcing algebra A := R[T ]/(sT + r).

In view of this results, it seems very natural to study in commutative
algebra the question of finding a closure operation with “good” properties (see
[12]), in terms of finding suitables algebraic-geometrical as well as topological
or homological properties of the forcing morphism. This approach goes closer
to the philosophy of Grothendieck’s EGA of defining and studying the objects
in a relative context (see [17] and [15]). A simple and deep example of this
approach is the counterexample to one of the most basic and important open
questions on tight closure: the Localization Problem i.e., the question whether
tight closure commutes with localization. This was done by H. Brenner and P.
Monsky using vector bundles techniques and geometric deformations of tight
closure (see [3]).

Besides, another good example going in this direction is a general defi-
nition of forcing morphism for arbitrary schemes. Specifically, let X and Y
be arbitrary schemes. Suppose that i : Z → X is a closed subscheme and
f ∈ Γ(X,OX) is a global section. Then, a morphism ϕ : Y → X is a forcing
morphism for f and Z, if

i) the pull-back of the restriction of f to Z, f|Z = i]Z(f) is zero, i.e.

ϕ]|ϕ−1(Z)(f|Z) = 0;

ii) for any morphism of schemes ψ : W → X with the same property, i.e.

ψ]|ψ−1(Z)(f|Z) = 0, there exists a (non-unique) morphism ψ̃ : W → Y such

that ψ = ϕ ◦ ψ̃. It is a natural generalization of the universal property of a
forcing algebra but in the relative context and in a category including that of
commutative rings with unity.

3. Forcing Algebras with several Forcing Equations

Now, we study just a few elementary properties of forcing algebras which
are defined by several forcing equations and which leads us in a natural way
to the understanding of the linear algebra over the base ring R. This section
could be understood as a simple invitation to this barely explored field of
mathematics. Here we recommend for further reading [4]. In this case we can
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write the forcing algebra in a matrix form:

A = R[T1, . . . , Tn]/

〈 f11 . . . f1n
...

. . .
...

fm1 . . . fmn

 ·
 T1

...
Tn

+

 f1
...
fm

〉 .
This corresponds to a submodule N ⊆M of finitely generated R-modules

and an element f ∈M via a free representation of these data (see [4, p. 3]).
Now, we study how the forcing algebra behaves when we make elementary

row or column operations in the associated matrix M . Remember that the
matrix notation in the forcing algebra just means that we are considering
the ideal generated by the rows of the resulting matrix, after performing the
matrix multiplications and additions.

First, if l1, ..., lm denote the rows of M , and c ∈ R denote an arbitrary
constant, making a row operation, lj 7→ clj + li, (i 6= j; that is changing the
jth row by c times the ith row plus the jth row) just means changing the
generators h1, ..., hm to the new generators h1, ..., hj−1, chi + hj , hj+1, ..., hm.
The ideal generated by these two groups of forcing elements coincides and
therefore the associated forcing algebra are the same. Similarly, if we make
operations of the form li 7→ lj and li 7→ cli, where c is an invertible element of
R, which correspond to change two rows and to multiply a row by an element
in R, then the forcing algebra does not change.

For the column operation, the problem is a little bit more subtle. Let
{C1, ..., Cn} be the columns of the matrix A. Consider the column operation
7→ dCi+CjCj , where d ∈ R. Now, define the following automorphism ϕ of the
ring of polynomials R[T1, ..., Tn] sending Ts 7→ Ts, for s 6= i, and Ti 7→ cTj+Ti.
Now,

ϕ(hr) = fr1T1 + ...+ fri(cTj + Ti) + ...+ frnTn =

fr1T1 + ...+ (cfri + frj)Tj + ...+ frnTn.

and then ϕ induces an isomorphism between the forcing algebra with matrix
M and the forcing algebra with matrix obtained from M performing the
previous column operation. Similarly, for operations of the form Ci 7→ Cj
and Ci 7→ dCi, where d ∈ R is an invertible element, the resulting forcing
algebras coincide. Now, if R is a field and the rank of the associated matrix
M is r, where r ≤ min(m,n), then performing row and column operations on
the associated matrix we can obtained a matrix form by the r × r identity
matrix in the upper-left side and with zeros elsewhere.

Therefore, the elements hi have just the following simple form: hi =
Ti + gi, for i = 1, ..., r and hi = gi, for i > r, and some gi ∈ R (this gi could
appear just in the nonhomogeneous case, corresponding to the changes made
on the independent vector form by the fj). Thus the forcing algebra A is
isomorphic either to zero (in the case that there exists gi 6= 0, for some i > r)
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or to k[Tr+1, ..., Tn]. This allow us to present the following lemma describing
the fibers of a forcing algebra as affine spaces over the base residue field.

Lemma 3.1. Let R be a commutative ring and let A be the forcing algebra
corresponding to the data {fij , fi}. Let p ∈ X be an arbitrary prime ideal of
R and r the rank of the matrix {fij(p)}. Then the fiber over p is empty or
isomorphic to the affine space An−rκ(p).

Proof. We know by a previous comment in section 1 that the fiber ring
over p is κ(p)⊗R A which is just

κ(p)[T1, . . . , Tn]/

〈 f11(p) . . . f1n(p)
...

. . .
...

fm1(p) . . . fmn(p)

 ·
 T1

...
Tn

+

 f1(p)
...

fm(p)

〉 .

Now, making elementary row and column operations on the matrix (fij(p)),
as indicated before, we can obtain a matrix with zero entries except for the
first r entries of the principal diagonal which are ones, plus an independent
vector.

In conclusion, after performing all the necessarily elementary operations,
we obtain an isomorphism from A to a very simple forcing algebra

B = κ(p)[T1, ..., Tn]/(T1 + g1, ..., Tr + gr, gr+1, ..., gn),

corresponding to the matrix with zero entries except for the first r entries of
the principal diagonal, which are ones. But then B is clearly isomorph to the
affine ring κ(p)[Tr+1, ..., Tn], if gr+1 = · · · = gn = 0, and A = 0 otherwise,
proving our lemma.

�

If κ(p) is algebraically closed, then the fiber over a point p ∈ SpecR of
this forcing algebra is just the solution set of the corresponding system of
inhomogeneous linear equations over κ(p). If the vector (f1, . . . , fm) is zero,
then we are dealing with a “homogeneous” forcing algebra. In this case there
is a (zero- or “horizontal”) section s : X = SpecR → Y = SpecA coming
from the homomorphism of R-algebras from A to R sending each Ti to zero.
This section sends a prime ideal p ∈ X to the prime ideal (T1, . . . , Tn)+p ∈ Y .

Remark 3.2. If all fk are zero, and m = n, then the ideal a is defined by
the linear forms hi = fi1T1 + · · ·+ finTn, and in this case we can “translate”
the fact of multiplying by the adjoint matrix of M , denoted by adjM , just to
saying that the elements detMTi ∈ a. In fact, detMT1

...
detMTn

 = detM ·Inn·

 T1
...
Tn

 = adjM ·M ·

 T1
...
Tn

 = adjM ·

 h1
...
hn





3. FORCING ALGEBRAS WITH SEVERAL FORCING EQUATIONS 23

where the entries of the last vector belong to a. From this fact we deduce
that, when the determinant of M is a unit in R, then a = (T1, ..., Tn) and
the forcing algebra is isomorphic to the base ring R. Note that the previous
argument works also in the nonhomogeneous case.

Now, we study the homogeneous case when the elements {h1, ..., hm} form
a regular sequence. First, we need the following general fact about the pure
codimension of regular sequences in Noetherian rings.

Proposition 3.3. Let S be a Noetherian ring and {r1, ..., rm} ⊆ S a
regular sequence and I the ideal generated by these elements. Then the pure
codimension of I is m.

Proof. We make induction over m. For m = 1 we know that every
minimal prime ideal of (r1) has height ≤ 1 by Krull’s theorem and the height
cannot be zero because r1 is not contained in any minimal prime of S, be-
cause it is not a zero divisor. Suppose that Im−1 = (r1, ..., rm−1) has pure
codimension m − 1 and write S′ = S/Im−1. Let P be a minimal prime over
I on S. We know that rm is not a zero divisor in S′ and therefore for the
case m = 1 the pure codimension of (rm) in S′ is one. Let’s denote by P ′

the prime ideal corresponding to P in S′. Then P ′ is minimal over rm and
therefore its height in S′ is one. Let P ′0 be a minimal prime on S′ contained
in P ′ and P0 its corresponding prime in S. Then P0 is minimal over Im−1 and
thus by induction hypotheses it has height m− 1 in S. Consider a saturated
chain of primes of length m− 1 ending in P0

Q0 * Q1 * ... * Qm−1 = P0.

Thus, completing this chain just by adding P we obtain a saturated chain of
length m for P . This shows that htP ≥ m, but by Krull’s theorem we know
that this height is ≤ m, because P is minimal over an ideal generated by m
elements on a Noetherian ring. This proves our proposition.

�

Besides, if j ∈ {1, ...,min(m,n)}, then we define the Fitting ideals Ij as
the ideals generated by the minors of size j of the matrix M . This definition
corresponds to the standard definition of Fitting ideals regarding M as a
R-homomorphism of free modules (see [10, p. 497]).

Proposition 3.4. Let R be a Noetherian integral domain and A the ho-
mogeneous forcing algebra corresponding to the data {fij}, with i = 1, ..., n
and j = 1, ...,m. Suppose that the forcing equations {h1, ..., hm} form a regu-
lar sequence in B := R[T1, ..., Tn]. Then m ≥ n and Imin(m,n) 6= (0).

Proof. First, note that the ideal I generated by the forcing elements is
contained in the homogeneous ideal P = (T1, ..., Tn), therefore we see that the
dimension of A is smaller or equal to the dimension of B/P , which is exactly
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the dimension of R. On the other hand, if we consider a saturated chain of
primes in A,

P0 * P1 * ... * PdimA,

where P0 is a minimal prime over I, then by Proposition 3.3 ht(P0) = m and
thus completing the former chain with a saturated chain for P0 in B of length
m, we see that dimB ≥ m + dimA. Now, noting that dimB = dimA + n,
since A is Noetherian, we get n + dimA ≥ m + dimA, which implies that
n ≥ m.

For the second part, let’s consider the matrix M in the field of fractions
K of R. It is an elementary fact that the rank of M is ≤ s if and only if every
minor of size s + 1 of M is zero. This follows from the fact that performing
row operations on a matrix change the values of fixed minor of size r of the
original matrix just by a nonzero constant term of another minor of size r
of the changed matrix (this is a general way of saying that performing a row
operation is just multiplying by an invertible matrix and therefore the fact
that the determinant of the matrix is zero or not is independent of the row
operation).

Now, suppose by contradiction that Imin(m,n) = 0, then the rank of
M in K is strictly smaller than min(m,n) and thus the rows of M are
linearly dependent in K. Without loss of generality, assume that there is
j ∈ {1, ...,min(m,n)}, such that the jth row of M , lj , is a linear combination

of the former ones, that is, there exist some αi ∈ K, such that lj =
∑j−1
i=1 αili.

Now, after multiplying by a nonzero common multiple β ∈ R of the denomi-

nators, we get an equation of the form βlj =
∑j−1
i=1 γili, for some γi ∈ R. But,

seeing this equality in A, (which means just multiplying this equality by the

n×1 vector given by the Ti) we see that βhj =
∑j−1
i=1 γihi, which implies that

hj is a zero divisor in B/(h1, ..., hj−1), because β /∈ (T1, ..., Tn) (β is a nonzero
constant polynomial in B) and therefore β /∈ (h1, ..., hj−1). This contradicts
the fact that I is generated by a regular sequence. �

The converse of the previous proposition is false as the following example
shows.

Example 3.5. Consider R = k[x];B = R[T1, T2];h1 = xT1 − xT2 and
h2 = xT1 + xT2, where k is a field of chark 6= 2. Then m = n = 2 and the
determinant of the associated matrix is 2x2, but the sequence {h1, h2} is not
regular, in fact, the ideal I generated by its elements has height just one,
because it is contained in the principal ideal (x), and therefore by Proposition
3.3, I cannot be generated by a regular sequence. Geometrically, the variety
defined by I is the union of a line V (T1, T2) and a plane V (x).

Intuitively, this example comes from the following observation. Suppose
that we have the forcing algebra with equations h′1 = T1+T2 and h2 = T1−T2.
If we consider the line V (T1 − T2, T1 + T2) = V (T1, T2) (whose associated
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determinant is 2 6= 0) and multiplying these equations by x, we obtain a
variety that is automatically the union of this line with the plane V (x) ⊆ k3,
which has bigger dimension, but the associated determinant of the new variety
(our former example) is just x2 times the former determinant. This process
gives us a new variety with nonzero determinant but with an ideal with smaller
codimension.

4. Some Homological Conjectures

The Homological Conjectures are a collection of conjectures on commu-
tative algebra relating homological as well as structural properties of commu-
tative rings, (involving its depth, dimension and projective dimension, among
others). They appeared in the 70’s, mainly after the work J. P. Serre on the
theory of multiplicities (see [36]) and their ultimate version, as today appears,
was stated by M. Hochster (see [24]). One of the most important ones is the
Direct Summand Conjecture, implying all the standard homological conjec-
tures in the positive characteristic case (see [22] other references are [33], [35],
[31]). In this section we discuss a little bit the state of art of this conjecture,
in order to introduce the reader to Chapter 4, where we give a new equivalent
form of it and prove some instances.

Direct Summand Conjecture (DSC). Let R ↪→ S be a finite exten-
sion of rings, where R is a regular ring. Then R ↪→ S splits, as a map of
R−modules.

It is proved in [20, Theorem 1] that the DSC holds if and only if for any
system of parameters x1, ..., xd ∈ R and any natural number t,

(x1 · · ·xd)t /∈ (xt+1
1 , ..., xt+1

d )S.

Explicitly, this is the well-known Monomial Conjecture (MC):
Monomial Conjecture Let (R,m) be a local ring of dimension d and

{x1, ..., xn} a system of parameters. Then for any t ∈ N we have

(x1 · · ·xd)t /∈ (xt+1
1 , ..., xt+1

d ).

The (MC) is equivalent to the Direct Summand Conjecture (DSC)(see [21] or
[22, Theorem 6.1]).

By elementary methods we can reduce the DSC to the local regular com-
plete case for R (see proof of Theorem 6.1 (Ch.4)). By the Going Up, we can
assume that S is an integral domain.

Firstly, if R contains a field of characteristic zero, then we consider the
trace between the corresponding field of fractions, and after considering its
restriction to S and dividing by the degree of the extension we obtain the
desired retraction (see [20, Lemma 2]).

Secondly, if R contains a field of positive characteristic, then, again by
doing elementary considerations on the fields of fractions, we see that there
exists a constant c ∈ R, such that cS is contained in a free R−module lying
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on the field of fractions of S. Besides, after reducing to the case in which R
contains a perfect field and by means of considering iterations of the Frobe-
nius homomorphism (i.e. the homomorphism elevating to the characteristic of
R) we obtain the splitting homomorphism. We expose in section 6 of Chap-
ter 4 a new proof of this case using estimates coming from the Theory of
Multiplicities. Moreover, we can prove the conjecture in the equicharacteris-
tic zero case by assuming positive equicharacteristic case for arbitrary large
primes. The result is obtain be means of Model Theory, specifically by using
Leftschetz’s Principles, and Schautens’ methods of the theory of ultrafilters,
in logic (for further readings and similar results concerning Koh’s Conjecture
see [38], [13]).

Thirdly, for low dimensions the state of the DSC is the following:
If dimR ≤ 2, then after passing to the normalization of S, which is again

a finite extension of S, (see [27, Exercise 9.8]), We can assume that S is a local
normal domain of dimension smaller of equal than two and finitely generated
R−module. So, we can apply Serre’s Criterion for normality to see that S
is a CM ring and thus the formula from Auslander-Buchsbaum shows that
S has projective dimension zero, i.e., S is R−free. In that way we get the
splitting. Lastly, we show, in Remark 2.1 (Ch.3), the case d = 1, by general
and elementary considerations, via the (MC).

The case of dimension three was obtain by R. Heitmann and his proof is
a significant advance in commutative algebra (see [18]).

The mixed characterictic case is open for dimension bigger that three.
Finally, an important reduction of the DSC was obtain by Hochster and

we use it in Chapter 4 (see [22, Theorem 6.1. and proof]). Specifically, in
order to prove the DSC we can assume that R is a unramified (i.e. p /∈ m2,
where p = char(R/m)) complete regular local of mixed characteristic ring
with algebraically closed residue field k and S is an integral domain.

For the main role of the DSC in Commutative Algebra and further refer-
ences, see [24].



CHAPTER 2

Connectedness

1. Generalities

Let us recall that a topological space X is connected if there exist exactly
two subsets (namely ∅ and X 6= ∅) which are open as well as closed. A
connected component of X is a maximal connected subspace, i.e., not strictly
contained in any connected subspace of X. Every connected component is
necessarily closed because its closure is a closed connected set containing it.
Moreover, the connected components form a partition of the space X.

Let Z be a set and let F be a subset of the power set P (Z) of parts
of Z. We say that Z has the zig-zag property (zzp) for F if for any pair
of subsets A,B ∈ F there exist finitely many subsets Y1, ..., Ym ∈ F such
that Y1 = A, Ym = B and for any i = 1, ...,m − 1, holds that Yi ⊆ Yi+1 or
Yi+1 ⊆ Yi. Let X be a Noetherian topological space, that means, that in X
holds the descending chain condition for closed subsets. Thus, every closed
subset of it can be written uniquely as a finite union of irreducible closed
subsets X1, ..., Xn (irreducible components) no one of them contained in the
union of the other ones (see [17, Proposition I 1.5.].) Then, it is elementary
to see that X is a connected topological space if and only if X has the zig-zag
property for the set consisting of the irreducible components.

For a commutative ring A, the spectrum SpecA is connected if and only
if A 6= 0 and if it is not possible to write A = A1 × A2 with A1, A2 6= 0.
Equivalently, there exist exactly two idempotent elements, namely 0 and 1
(see for example [17, Exercise 2.19, Chapter II] or [10, Exercise 2.25]). Hence
domains and local rings are connected.

If A is an algebra of finite type over C, i.e. A = C[x1, ..., xn]/J , for some
ideal J ⊆ C[x1, ..., xn]. Then, the connectedness of Y := Spec A, with the
Zariski topology, is equivalent to the connectedness of YC = SpmA = V (J) ⊆
Cn with the standard topology. We shall sketch a proof of this fact mainly
following [37, Theorem 1, p. 126]. For another approach see [32, Lemma p.
56].

First, after considering a decomposition into the irreducible components
and since they are, clearly, connected in the Zariski topology, we can assume
that our variety is irreducible. We argue by induction on d = dimY . If
n = 1, then after passing to the normalization we can assume that Y is

27
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nonsingular. But, on that case we derive the connectedness of YC as a direct
consequence of the classification theorems for nonsingular complex curves. If
n > 1, by Bertini’s Theorem we derive the existence of a surjective morphism
ϕ : Y ⊇ U → Z, where U is open, Z is an irreducible variety of dimension
n− 1 and the fibers are irreducible curves (and therefore ϕ−1C (u) is connected
for all u ∈ U). Besides, ϕ has surjective differential in every point of U . Now,
assume that there exits closed subsets Y1, Y2 ∈ YC such that YC = Y1]Y2, then
by the assumptions on ϕ, ZC = ϕC(Y1)]ϕC(Y2), where by induction we know
that ZC is connected. Furthermore, by the surjectivity of the differentials and
the Theorem of the Implicit Function ϕC(Y1) and ϕC(Y2) are open, therefore
one of them is empty. In conclusion, one of the Yi is empty, which implies the
connectedness of UC. Finally, we see again by induction on d that UC is dense
on YC, so YC is also connected.

Since an affine space is irreducible and hence connected, the preceding
lemma tells us that the fibers of a forcing algebra are connected unless they
are empty. The easiest example of an empty forcing algebra is K[T ]/(0T −1).
A forcing algebra may be connected though some fibers may be empty, an
example is given by K[X,Y ][T1, T2]/(XT1 + Y T2 − 1).

In the following we will mainly deal with the case where all fibers are
non-empty. This is equivalent to say that f belongs to the radical of the ideal
I (or, by definition, to the radical of the submodule N , see [4, Example 3.1.]).

Proposition 1.1. Let A be a forcing algebra over R with the correspond-
ing morphism ϕ : Y = SpecA→ X = SpecR. Then the following hold.

(1) The connected components of Y are of the form ϕ−1(Z) for suitable
subsets Z ⊆ X.

(2) If ϕ : Y → X is surjective, then these Z are uniquely determined.
(3) If ϕ : Y → X is surjective and Y is connected, then X is connected.
(4) If the forcing data are homogeneous, then there is a bijection between

the connected components of X and Y . In particular, X is connected
if and only if Y is connected.

(5) Suppose that ϕ : Y → X is a submersion. Then there is a bijection
between the connected components of X and Y . In particular, X is
connected if and only if Y is connected.

Proof. (1) By Lemma 3.1 (Ch. 1), the fibers are connected. Hence
a connected component Y ′ of Y which contains a point of a fiber contains
already the complete fiber, therefore Y ′ = ϕ−1(ϕ(Y ′)).

(2) Clearly Z = ϕ(Y ′).
(3) Trivial
(4) Recall that a submersion ϕ : Y → X between topological spaces is

surjective and has the property that ϕ−1(T ) is open if and only if T ⊆ X is
open. Now, assume that s : X → Y is a section, i.e. ϕ ◦ s = IdX . Then,
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clearly Z = s−1(ϕ−1(Z)) for any subset Z ⊆ X, therefore Z is open if and
only if ϕ−1(Z) is open. In conclusion (4) follows from (5).

(5) We see that if W ⊆ Y is a connected component then ϕ(W ) is so is.
Effectively, by (2) we know that W = ϕ−1(ϕ(W )), so ϕ(W ) ⊆ X is closed
and clearly is connected because W is connected. Finally, ϕ(W ) cannot be
strictly contained in a connected component of X, say C, because on that
case W ( ϕ−1(C), due to the surjectivity of ϕ, implying that ϕ−1(C) is not
connected. But, this is impossible because the preimages of closed connected
subsets of a submersion are closed connected. In fact, if D ⊆ X is closed
connected and ϕ−1(D) = V1 ] V2 for two nonempty closed subsets of Y , then
due to the connectedness of the fibers and the fact that Vi = ϕ−1(ϕ(Vi)) we
see that W = ϕ(V1) ] ϕ(V2), a contradiction. �

In conclusion, ϕ sends the connected components of Y onto the connected
components of X, inducing the desired bijection between them.

Example 1.2. The conditions in Proposition 1.1 (4), (5) are necessary, as
the following example shows. Consider R = K[X], and the nonhomogeneous
forcing algebra A = R[T ]/(X2T − X). The minimal primes of (X2T − X)
are (X) and (XT − 1), which are comaximal (since 1 = XT − (XT − 1)).
So by the Chinese Remainder Theorem A ∼= R[T ]/(X)×R[T ]/(XT − 1) and
therefore

SpecA = Spec k[T ] ] SpecK[X,T ]/(XT − 1) ,

i.e. a disjoint union of a line over a point and a hyperbola dominating the base.
In fact, its image is the pointed affine line, hence dense, because the prime
ideals of K[X] not containing are in bijection with the primes of K[X]X , which
are exactly the image of SpecK[X,T ]/(XT −1)X , since K[X,T ]/(XT −1) ∼=
K[X]X . But, SpecR is the affine line which is connected. Note that the
element X belongs to the radical of (X2). Hence ϕ : SpecA → SpecR is
surjective, but ϕ is not submersive due to the fact that V (X) ⊆ Spec K[X]
is not open but by the former facts ϕ−1(V (X)) = SpecK[X,T ]/(XT − 1) is
open (for the relation with integral closure see Theorem 6.2 and Remark 6.3).

2. Horizontal and Vertical Components

We describe now the irreducible components of the spectrum of a forcing
algebra over an integral base in the ideal case. We will identify prime ideals
inside R[T1, . . . , Tn] minimal over (f1T1 + . . . + fnTn + f) with the minimal
prime ideals of the forcing algebra R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f).

Lemma 2.1. Let R be a Noetherian domain, I = (f1, . . . , fn) an ideal,
f ∈ R, A = R[T1, . . . , Tn]/(f1T1 + . . .+fnTn+f) the forcing algebra for these
data and ϕ : Y → X the forcing morphism. Then the following hold.
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(1) For I 6= 0 there exists a unique irreducible component H ⊆ SpecA
with the property of dominating the base SpecR (i.e. the image of
H is dense). This component is given (inside R[T1, . . . , Tn]) by

p = R[T1, . . . , Tn] ∩ (f1T1 + . . .+ fnTn + f)Q(R)[T1, . . . , Tn] ,

where Q(R) denotes the quotient field of R.
(2) All other irreducible components of SpecA are of the form

V (qR[T1, . . . , Tn]),

for some prime ideal q ⊆ R which is minimal over (f1, . . . , fn, f).
(3) For a minimal prime ideal q ⊆ R over (f1, . . . , fn, f) the extended

ideal qR[T1, . . . , Tn] defines a component of SpecA if and only if
I = 0 or I 6= 0 and p * qR[T1, . . . , Tn].

Proof. (1). For I 6= 0 the polynomial f1T1 + . . .+fnTn+f is irreducible
(thus prime) in Q(R)[T1, . . . , Tn], hence the intersection of this principal ideal
with R[T1, . . . , Tn] gives a prime ideal in this polynomial ring and therefore
in R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f). The minimality is clear, since it

holds in a localization. Because of ϕ(p) = R ∩ p = 0, X = V (0) ⊆ ϕ(p)
then this component dominates the base. On the other hand, to see the
uniquely determine, let p′ be a minimal prime ideal that is minimal over
(f1T1 + . . . + fnTn + f) and suppose that R ∩ p′ = 0. Let h ∈ p. Then
there exists r, s ∈ R, r 6= 0, and a polynomial G ∈ R[T1, . . . , Tn] such that
rh = sG(f1T1 + . . .+ fnTn + f). This element belongs to p′ and since r 6∈ p′

we deduce h ∈ p′. Hence p′ = p. Another way to prove this, is noting that
there is a bijection between the minimal primes of A not intersecting Rr {0}
and the minimal primes of K(R)⊗A, which is just the zero ideal.

(2). Let (f1T1 + · · · + fnTn + f) ⊆ Q be a minimal prime ideal dif-
ferent from p. Since each fi 6= 0 is not nilpotent, then in the localization
Afi
∼= Rfi [T1, ..., Ťi, ..., Tn] there is only one minimal prime ideal, the zero

ideal, defining the horizontal component of SpecAfi (as in (1)). Therefore, if
QAfi ∈ SpecAfi , then QAfi = 0, because it is minimal on the domain Afi .
But, due to the fact that Afi ⊆ K(R)⊗A, we get QK(R)⊗A = 0 and thus Q∩
R = 0, and then by (1) Q = p, a contradiction. Hence, QAfi /∈ SpecAfi but
that implies fi ∈ Q. Because Q contains the forcing equation we also deduce
f ∈ Q. Hence (f1, . . . , fn, f) ⊆ Q and by the minimality condition Q is mini-
mal over the extended ideal (f1, . . . , fn, f)R[T1, . . . , Tn]. Therefore Q must be
the extended ideal of a minimal prime ideal q of (f1, . . . , fn, f) in R (the mini-
mal prime ideals above (f1, . . . , fn, f)R, above (f1, . . . , fn, f)R[T1, . . . , Tn] and
above (f1, . . . , fn, f)A are in bijection).

(3). Let q1 6= q2 be minimal prime ideals of (f1, . . . , fn, f) in R, so q1A
and q2A are incomparable. Then, qA is a minimal prime ideal of SpecA if
and only if p 6⊆ qA (since by (ii) we know there are no other possible minimal
prime ideals). �
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We call H = V (p) the horizontal component of the forcing algebra and
the other components V (qj) the vertical components. If I = 0 there exist
only the vertical components which are in bijection with the components of
SpecR/(f).

Remark 2.2. If n = 1, R is a domain and f1 6= 0, then the horizontal
component is just the closure of the graph of the rational function T = − f

f1
view as a subset of Y = SpecA. To see this remember that the graph of
−f/f1 ∈ Rf1 is, by definition, SpecRf1 [T ]/(T + f/f1) = SpecAf1

∼= D(f1) ⊆
Y . Then, we need to prove that H = V (p) = D(f1) ⊆ Y . Let D(J) ⊆ Y
a neighborhood of p, i.e. the ideal J * p. Suppose that D(J) ∩ D(f1) =
D(J · (f1)) = ∅, that implies, in particular, that J · (f1) ⊆ p, but we know
that there exists an element j ∈ Jrp. Since, jf1 ∈ p we have f1 ∈ p, which is
impossible, because p∩R = 0. So, D(J)∩D(f1) 6= ∅, implying that p ∈ D(f1)

and thus V (p) ⊆ D(f1).
Conversely, let Q ∈ D(f1), i.e. f1 /∈ Q, we see that Q ∈ V (p). In fact,

choose a minimal prime ideal P ′ ∈ SpecA contained in Q, then by Lemma 2.1,
P ′ = p or P ′ = qA for some prime ideal q ∈ SpecR minimal over (f1, f). Now,
the second case is impossible because f1 /∈ p. In conclusion, D(f1) ⊆ V (p),

and so D(f1) ⊆ V (p). Hence, D(f1) = V (p).

Remark 2.3. If R is a Noetherian domain and I = (f1, . . . , fn) 6= 0, then
the horizontal component exists and the describing prime ideal p has height
one in R[T1, . . . , Tn]. If q is a minimal prime ideal over (f1, . . . , fn, f) of height
one, then the extended ideal in the polynomial ring has also height one and
can therefore not contain the horizontal prime ideal. Therefore such prime
ideals yield vertical components.

It is possible that all the V (qj), where qj ⊇ (f1, . . . , fn, f) is a minimal
prime ideal, lie on the horizontal component. In this case there exists no ver-
tical component. This happens, for example, if the forcing equation generates
a prime ideal, because on that case the horizontal component is the whole
space, i.e. H = V (0) = SpecA.

If the forcing equation has a nice factorization inside the polynomial ring
R[T1, . . . , Tn], then we can describe the horizontal and vertical components
more explicitly.

Lemma 2.4. Let R be an Noetherian integral domain and A be a forcing
algebra over R with forcing equation h = f1T1 + · · ·+ fnTn + f = dh′, where
(f1, . . . , fn) 6= 0, d ∈ R and where h′ = f ′1T1 + · · · + f ′nTn + f ′ is a prime
element in B = R[T1, . . . , Tn]. Then the horizontal component of SpecA is
V (h′) and the vertical components of SpecA are V (qA), where q varies over
the minimal prime ideals of (d) in R.
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Proof. Because h′ is a prime element we have

(h′)R[T1, . . . , Tn] = R[T1, . . . , Tn] ∩ (h)Q(R)[T1, . . . , Tn]

and this gives by Lemma 2.1 (1) the horizontal component. By Lemma 2.1
(3) we have to show that the minimal prime ideals over (d) correspond to the
minimal prime ideals over J = (f1, . . . , fn, f) with the additional property
that their extension to R[T1, . . . , Tn] does not contain h′.

So let q be a minimal prime ideal over (d). Then by Krull’s theorem the
height of q is 1 and hence it is also minimal over J ⊆ (d). Moreover, the
height of qR[T1, . . . , Tn] is also 1. Besides, h′ 6∈ qb, for otherwise (0) ( (h′) (
qR[T1, . . . , Tn] would be a chain of prime ideals of length 2, because (h′) 6= qB,
since (h′) ∩R = 0 and qR[T1, . . . , Tn] ∩R = q.

Conversely, let q denote a minimal prime ideal of J such that h′ does not
belong to qR[T1, . . . , Tn]. Assume that d 6∈ q. Then because of

f ′1d, . . . , fnd, f
′d ∈ q

we get f1, . . . , fn, f ∈ q and hence the contradiction h′ ∈ qR[T1, . . . , Tn]. So
we must have d ∈ q and q must also be minimal over (d). �

If R is a (not necessarily Noetherian) unique factorization domain (UFD),
then there exists always a factorization h = dh′ with h′ a prime element in B.
The minimal prime ideals over (d) are given by the prime factors p of d, and
pB has also height 1. Hence the argument of the lemma goes through also in
this case. Example 4.7 below shows that a forcing equation does not always
have a prime decomposition as in the lemma. Then it is more complicated to
determine the vertical components.

Notice that Lemma 2.1(1) also holds in the module case. The following
example shows that Lemma 2.1 (2) is not true and the irreducible components
in the module case are more complicated.

Example 2.5. Consider over R = K[X,Y ] the forcing algebra

A = R[T1, T2]/(XT1−XY, Y T2−XY ) ∼= R[T1, T2]/

((
X 0
0 Y

)(
T1
T2

)
−
(
XY
XY

))
.

It is easy to see that horizontal component of SpecA is given by the prime
ideal (T1−Y, T2−X). The algebra is connected by Lemma 1.1(4), since there
is a section sending T1 → Y and T2 → X. The other minimal prime ideals
are (X,T2), (Y, T1) and (X,Y ). But, only the last one is the extension of a
prime ideal of the base.

3. Connectedness Results

The following is our main general connectedness result on forcing algebras.
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Theorem 3.1. Let R be a Noetherian domain, I = (f1, . . . , fn) an ideal
6= 0, f ∈ R and A = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f) the forcing algebra
for these data. Let H = V (p) be the horizontal component of SpecA and let
Vj = V (qj), j ∈ J , be the vertical components of SpecA according to Lemma
2.1. Let Zi =

⋃
j∈Ji Vj be the connected components of

⋃
j∈J V (qj). Then

SpecA is connected if and only if H intersects every Zi.

Proof. More general, assume that Y is a topological space and H,Vj ∈
Y , where j ∈ J , are connected closed subsets such that Y is the finite union of
them. Then, with the same notation for the Zi, Y is connected if and only if H
intersects every Zi. Efectivelly, one direction is trivial, for the other, assume
by contradiction that there exists some Zj such that H ∩ Zj = ∅. Then,
Y = Zj ] (∪r 6=jZr ∪H), where each of the tow disjoint subsets is a nonempty
closed subset due to the fact that we have just finitely many subsets. Note
that the fact that H is exactly the horizontal component is not relevant at
all. The advantage in making this choice is that we can determine the Zj just
over SpecA, since Vi ∩ Vj 6= ∅ if and only if qi + qj ( R.

�

Corollary 3.2. Let R be a Noetherian domain of dimension 1, I =
(f1, . . . , fn) an ideal 6= 0, f ∈ R and A = R[T1, . . . , Tn]/(f1T1+. . .+fnTn+f)
the forcing algebra for these data. Let H = V (p) be the horizontal component
of SpecA and let Vj = V (qj), j ∈ J , be the vertical components of SpecA
according to Lemma 2.1. Then SpecA is connected if and only if H intersects
every Vj.

Proof. This follows from Theorem 3.1 since the minimal prime ideals of
I 6= 0 in a one-dimensional domain are maximal ideals. These maximal ideals
form the connected components of V (I). �

Note that this corollary is not true in higher dimension, see Example 4.8
in the next section. We specialize now to the local case.

Corollary 3.3. Let (R,m) be a local domain, I = (f1, . . . , fn) ⊆ m
an ideal 6= 0, f ∈ m and A = R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) the
forcing algebra for these data. Let H = V (p) be the horizontal component
of SpecA according to Lemma 2.1. Then SpecA is connected if and only if
p + (I, f)B 6= B in B := R[T1, . . . , Tn].

Proof. Let qj , j ∈ J , be the minimal prime ideals of (I, f), disregarding
whether the Vj = V (qjB) give rise to vertical components of SpecA or not.
Note that Vj ∩ Vi 6= ∅ for all i, j, because mB ∈ Vj , since we are over a local
ring. First, suppose that for at least one j we have Vj = V (qjB) ⊆ H, that
means p ⊆ qjB, so p + (I, f)B ⊆ mB, and p + qiB ⊆ mB for all i. But, that
means H ∩Vi 6= ∅, for all i, therefore by Theorem 3.1 SpecA is connected. So
under this assumption the two properties holds.
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So suppose next that Vj 6⊆ H for all j, meaning that all Vj are vertical
components of SpecA. The union of the subsets V (qjB) inside the local ring
SpecR form just one connected component by a previous comment because
any pair of them has nonempty intersection. Hence, there is exactly one Z in
the notation of Theorem 3.1. By this theorem, SpecA is connected if and only
if H ∩Z 6= ∅. Because of Z = V (∩jqjB) this is equivalent to p+ (I, f)B 6= B,
since ∩jqj = rad ((I, f)B). �

Example 3.4. Let R = K[X,Y ](X,Y ), let A = R[T ]/(XY T − X). The
horizontal component is V (Y T −1) and the only vertical component is V (X).
Because they intersect (or because (Y T − 1, X) 6= (1)) the forcing algebra is
connected. However, we have (Y T −1,m) = (1), that means, H∩V (mA) = ∅,
so the connectedness over a local ring does not imply that the horizontal
component meets the fiber over the maximal ideal.

4. Connectedness over Unique Factorization Domains

We deal now with the case where R is a UFD. Note that if R is a UFD,
then B = R[T1, . . . , Tn] is factorial as well. So if h = f1T1+ . . .+fnTn+f ∈ B
is a forcing equation, then one can factor out a greatest common divisor of
all the coefficients f1, . . . , fn and f , say d, and obtain a representation of
h as a product of an element d in R and an irreducible polynomial h′ =
(f1/d)T1 + . . .+ (fn/d)Tn + (f/d) in B (for n ≥ 1), which generates a prime
ideal because B is a UFD. This hypothesis appeared already in Lemma 2.4
and is also crucial in the following sufficient condition for connectedness.

Corollary 4.1. Let R be a Noetherian domain, B := R[T1, . . . , Tn], and
let

h := f1T1 + . . .+ fnTn + f = d(f ′1T1 + . . .+ f ′nTn + f ′)

be a forcing equation such that h′ := f ′1T1 + . . .+ f ′nTn+ f ′ is a prime polyno-
mial. Suppose that (f1, . . . , fn) 6= 0 and (f ′1, . . . , f

′
n) is not contained in any

minimal prime ideal of (d). Then SpecA is connected, where A = B/(h).

Proof. By Lemma 2.4, the horizontal component of SpecA is V (h′) and
the vertical components correspond to the minimal prime ideals q over (d).
We will show that V (q) intersects the horizontal component.

This can be established after the base change R → κ(q). Now at least
one of the f ′i becomes a unit in κ(q) and therefore h′ is not a unit over κ(q).
So κ(q)[T1, . . . , Tn]/(h′) 6= 0. �

Note also that if d is a unit, then h = h′ is a prime polynomial by
assumption and then the forcing algebra is integral, hence connected anyway.

Now, we shall deduce a Corollary in the case that R is a UFD. In this kind
of rings we can define a greatest common divisor of a finite set of elements
a1, . . . , am, denoted by gcd(a1, . . . , am), using the prime factorization, and it
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is well defined up to a unit in R and defined as the unity in R in the case that
the elements have no irreducible common factor.

Lemma 4.2. Let R be a UFD, f1, . . . , fn, f ∈ R with some fi 6= 0 and let
d be a greatest common divisor of f1, . . . , fn and f and write

h = f1T1 + . . .+ fnTn + f = d(f ′1T1 + . . .+ f ′nTn + f ′)

where f ′i = fi/d. Then h′ = f ′1T1+ . . .+f ′nTn+f ′ is an irreducible polynomial
and describes the horizontal component of SpecR[T1, . . . , Tn]/(h).

Proof. Suppose we have a factorization h′ = h1h2 in B = R[T1, . . . , Tn].
Then one of the hi can not contain any variable Tj , say h1, thus h1 ∈ R.
Therefore, h1 divides each f1/d, . . . , fn/d, f/d and therefore it is a unit in
R, because these elements have no common irreducible factors. Thus h′ is
an irreducible polynomial and hence a prime element (B is also a UFD) and
therefore by the correspondance between the prime ideals of the localization
K(R)⊗B and the prime ideals of B not intersecting Rr {0} and by Lemma
2.4(1), we have that p = (dh′)K(R)⊗B∩B = (h′)K(B)⊗B∩B = (h′)B. �

Corollary 4.3. Let R be a UFD, f1, . . . , fn, f ∈ R with some fi 6= 0
and let d be a greatest common divisor of f1, . . . , fn and f . Let

h = f1T1 + . . .+ fnTn + f = d(f ′1T1 + . . .+ f ′nTn + f ′)

be the forcing equation and let d = p1 · · · pk be a prime factorization of d.
Suppose that {1, . . . , k} =

⊎
i∈I Ji such that the

⋃
j∈Ji V (pj) are the connected

components of V (d). Then SpecB/(h) is connected if and only if for every i
there exists some j ∈ Ji such that (f ′1T1 + . . .+ f ′nTn + f ′, pj) 6= (1).

Proof. By Lemma 2.4 and Lemma 4.2, p = (f ′1T1 + . . . + f ′nTn + f ′)
describes the horizontal component and every vertical component corresponds
to a prime factor of d. Hence the statement follows directly from Theorem
3.1. �

The condition that (f ′1T1 + . . .+ f ′nTn + f ′, p) 6= (1) is true if p does not
divide all f ′1, . . . , f

′
n or if f ′ is not a unit modulo p. But, none of this condition

is equivalent to the one given in the corollary as the following examples shows.

Example 4.4. LetR = K[X,Y ]. For h = X(XT+Y ) we have d = X = p.
Because Y is not a unit modulo X, the forcing algebra is connected. For
h = X(XT +X+ 1) we also have d = X = p. Now, X+ 1 is a unit modulo X
and the forcing algebra is not connected. However for h = X(Y T + X + 1),
we have that X + 1 is a unit modulo X but the forcing algebra is connected.
For h = XY (XT1 + Y T2 + f ′) we have d = XY , but f ′1 = X, f ′2 = Y do not
have a common prime factor and hence the forcing algebra is connected. On
the other hand, for h = X(XT + Y ), the forcing algebra is connected but X
divides f1 = X.
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Corollary 4.5. Let R be a UFD, B = R[T1, . . . , Tn], h = f1T1 + . . . +
fnTn + f a forcing equation and A = B/(h). Let d be a greatest common
divisor of f1, . . . , fn and f , and assume that at least one of the fi 6= 0. Suppose
that gcd(d, f1/d, . . . , fn/d) = 1, then SpecA is connected. Moreover, if R
is a principal ideal domain then the condition gcd(d, f1/d, . . . , fn/d) = 1 is
equivalent to SpecA being connected.

Proof. We write h = dh′, where h′ = f ′1T1 + . . . + f ′nTn + f ′ where
f ′i = fi/d and f ′ = f/d. Thus, the first part follows directly from Corollary
4.1, because the hypothesis clearly implies that (f ′1, ..., f

′
n) is not contained in

any minimal prime ideal of (d). For other proof, let p be a prime factor of d.
Then p does not divide some f ′i . But then f ′1T1 + . . .+ f ′nTn + f ′ is not a unit
modulo p, and the condition of Corollary 4.3 holds even for every p.

Finally, we assume that R is a principal ideal domain and that

(d, f ′1, . . . , f
′
n) = (e),

where e ∈ R is not a unit. Let p ∈ R be a prime element dividing e. We
still work with the factorization h = dh′, where h′ is irreducible and describes
the horizontal component. The elements f1/d, . . . , fn/d, f/d do not have a
common prime factor, hence p does not divide f/d. Therefore in the field
R/(p) the element f/d becomes a unit u and the polynomial h′ becomes
0T1 + . . . + 0Tn + u. Therefore the horizontal component V (h′) and the
vertical component V (p) are disjoint and the forcing algebra is not connected
by Corollary 3.2. �

Remark 4.6. The previous corollary suggests a deep relation between
the topology of the quotients of UFD by principal ideals and the arithmetic
of the generators of these ideals. Therefore, it makes sense to define the
notion of connected numbers in UFDs B as numbers t such that SpecB/(t)
is a connected topological space, and to explore the arithmetic-topological
connections coming from this new definition.

Example 4.7. We consider the domain R = K[X,Y, Z]/(Z2−XY ). This
is not a UFD, since Z2 = XY can be written in two ways as a product of
irreducible factors. Accordingly, the rational function q = Z

X = Y
Z is defined

onD(X,Z), and (X,Z) is a prime ideal of height one not given by one element.
We look at the forcing algebra

B = R[T ]/(XT − Z) .

It is elementary to see that the element XT −Z is irreducible in R[T ], but not
prime, because Z(XT−Z) = X(ZT−Y ), but neither X nor ZT−Y belongs to
(XT−Z). The minimal prime ideals over (XT−Z) are p = (XT−Z,ZT−Y ).
Effectively, due to ZT−Y = (Z/X)(XT−Z), we deduce that ZT−Y ∈ p and
we can see that R[T ]/(XT − Z,ZT − Y ) ∼= R[X,Z, T ]/(XT − Z), which is a
domain, and so (XT −Z,ZT −Y ) ⊆ p is a prime ideal who also dominates the
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base, then they are equal. In conclusion, it describes the horizontal component
in the spectrum of the forcing algebra B, corresponding to the closure of
the graph of the rational function q (see Remark 2.2). Finally, the vertical
component is (X,Z)R[T ]. Because of (X,Z)+(XT −Z,ZT −Y ) = (X,Y, Z),
these two components intersect and therefore the forcing algebra is connected.

Example 4.8. The condition of being a principal ideal domain for R in
the last part of Corollary 4.5 is necessary, as the following example shows
(see also Figure 1, for the case K = R). With the notation from above
we consider the following setting: R := K[X,Y ], B = R[T ], h = X2Y T −
XY = XY (XT − 1) and A := B/(h). Clearly, d = gcd(X2Y,XY ) = XY ,
f1 = X2Y and gcd(d, f1/d) = gcd(XY,X) = X 6= 1. Besides, as Lemma
2.1 or Lemma 2.4 shows, the irreducible components of SpecA are the hor-
izontal component V ((XT − 1)A) (red hyperbolic surface) and the vertical
components V (XA) (blue plane) and V (Y A) (green plane). Furthermore,
V (XA)∩V (Y A) = V ((X,Y )A) 6= ∅, so the two vertical components are con-
nected. Because of V (Y A) ∩ V ((XT − 1)A) = V ((Y,XT − 1)A) 6= ∅ (note
also that V (XA) ∩ V ((XT − 1)A) = V ((X,XT − 1)A) = ∅) the condition
of Theorem 3.1 (or Corollary 4.3) is fulfilled and hence SpecA is connected.
However, the condition of a greatest common divisor in Corollary 4.5 does not
hold.

Figure 1. Corresponding to (SpecA)R.

5. Local Properties

An interesting question is whether the connectedness of Y = SpecA is a
local property over the base X = SpecR. Specifically, is it true that Y is a
connected space if and only if X is connected and for every p ∈ X, SpecAp

is connected, where Ap denotes the localization of A at the multiplicative
system R \ p (considered in A). The next theorem gives a positive answer to
the “if” part of this question in general. For a forcing algebra, the converse
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holds for a one-dimensional domain, but neither over a reducible curve nor
over the affine plane.

Theorem 5.1. Let ψ : R→ A be a ring homomorphism. Set X := SpecR
and Y := SpecA. Suppose that X is a connected space and that for all p ∈ X,
SpecAp is connected, where Ap := AR\p, that is, Y is locally (over the base)
connected. Then Y is connected.

Proof. We first show that we can assume that ψ is injective: first, note
that for any minimal prime p ∈ X, the space SpecAp is not empty, because
it is connected (our convention is that the empty set is not connected). Let
Q ∈ SpecAp be a prime ideal, then ψ−1(Q) is a prime ideal of R contained
in p, because ψ−1(Q) ∩ (R \ p) = ∅, moreover it is equal to p in view of
the minimality of p. Therefore, for any minimal prime in R, there exists a
prime ideal Q in A lying over it. Therefore for any a ∈ kerψ, we know that
ψ(a) = 0 ∈ ∩Q∈YQ and then a ∈ ∩Q∈Y ψ−1(Q) ⊆ ∩p∈minRp = nilR, that is
kerψ ⊆ nilR.

In consideration of this it is enough to reduce to the case of R being re-
duced. For this reduction consider the natural homomorphism ψred := Rred →
Ared induced by ψ, killing the nilpotent elements. Now, our hypothesis of
locally (over the base X) connected and the conclusion holds for Y if and
only if if holds (over the base Xred = Spec(Ared)) for Yred := Spec(Ared).
In fact, clearly X u Xred and Y u Yred as topological spaces, besides,
for any p ∈ Xred, (Ared)p u Ap/(nilA)Ap and (nilA)Ap ⊆ nil(Ap), hence
Spec((Ared))p u Spec(Ap/ nilAp) u SpecAp. In conclusion, it is enough to
prove the theorem in the reduced case for injective ψ.

Now, we assume that Y is not connected, which is equivalent to say that
there exists nontrivial idempotents e1, e2 ∈ A with e1 + e2 = 1, e1e2 = 0 and
e1, e2 6= 0, 1. Set Ji = AnnR(ei) for i = 1, 2. We claim that J1 + J2  R.
Otherwise there exists yi ∈ Ji such that y1 + y2 = 1, and then y1y2 =
y1y2(e1+e2) = y2(y1e1)+y1(y2e2) = 0+0 = 0. Therefore X = V (y1)]V (y2),
that is, we can write X as a disjoint union of two closed subsets, which implies
in view of the connectedness of X that one of these closed subsets is empty, or
what is the same, one of the yi is a unit. Hence, ei = y−1i (yiei) = y−1i 0 = 0,
a contradiction.

So let J1 + J2 ⊆ P be a prime ideal. By assumption, AR\p is connected,
hence either e1 or e2 become 0 in this ring. This means (in the first case)
that there exists s ∈ R \ p such that se1 = 0 in A. But then we get the
contradiction s ∈ J1. In conclusion, Y is a connected space. �

We deal next with the one-dimensional case.

Corollary 5.2. Suppose that R is a Noetherian domain of dimension
1. Let I = (f1, . . . , fn) 6= 0 be an ideal, f ∈ R an element and A =
R[T1, . . . , Tn]/(f1T1 + . . .+fnTn+f) the forcing algebra for these data. Then
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SpecA is connected if and only if SpecA is locally connected, i.e. for every
prime ideal p ∈ SpecR is AR\p connected.

Proof. The global property follows from the local property by Theorem
5.1. So suppose that SpecA is connected. By the assumption I 6= 0 we know
that a horizontal component exists. Hence the fiber over the generic point
(0) is nonempty, thus connected by Lemma 3.1 (Ch. 1). The connectedness
of SpecA means by Corollary 3.2 that the horizontal component meets every
vertical component. The vertical components of SpecAq over SpecRq for
a maximal ideal q in SpecR are empty or V (qAq), and in the second case
the ideal p′ defining the horizontal component of SpecAq is not contained in
qAq, therefore the same holds on SpecA, because the horizontal component
here is just the intersection of p′ with A, so V (qA) is a vertical component
of SpecA. By the intersection condition the horizontal component and this
vertical component V (qA), (if it exists) intersect on SpecA but that implies,
on this particular case, that they intersect also in the localization at R r q,
so SpecAp is connected. �

The following example shows that for a non-integral one-dimensional base
ring, connectedness is not a local property.

Example 5.3. Let R = K[X,Y ]/(XY (X + Y − 1)). Its spectrum has
three line components forming a triangle meeting in (0, 0), (1, 0) and (0, 1).
Consider the forcing algebra

A = R[T ]/((Y +X2)T −X(X + Y − 1)) .

Here we will identify the closed subsets of SpecR with the corespondent affine
subvarieties of V (XY (X + Y − 1). Its spectrum consists in a horizontal line
H1 over X = 0, a horizontal line H2 and one (or two) vertical components
over X + Y = 1, depending on the number of different roots over K of the
polynomial X2 − X + 1, a vertical line V over X = Y = 0 and the graph
G of the rational function (X − 1)/X over Y = 0. Because of G ∩ H2 =
{(1, 0, 0)}, H1 ∩ H2 = (0, 1, 0) and H1 ∩ V = (0, 0, 0), the forcing algebra
A is connected. However, the localization of the forcing algebra at (X,Y )
is not connected, because the connecting component H2 is missing (the two
connected components are V ∪H1 and G).

Corollary 5.4. Suppose that R is a Dedekind domain.
Let I = (f1, . . . , fn) be an ideal, f ∈ R an element inside the radical of I

and
A = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f)

be the forcing algebra for these data. Then the following are equivalent.

(1) SpecA is connected.
(2) SpecA is locally connected, i.e. for every prime ideal P ∈ SpecR is

AR\P connected.
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(3) f ∈ I.

Proof. The equivalence between (1) and (2) follows from Corollary 5.2.
To see that (2) implies (3) we may assume that R is local, (i.e. a discrete
valuation domain) because f ∈ I if and only if for any prime q ⊆ R f/1 ∈
IRidealq. Let p be a generator of its maximal ideal. We may assume at once
that I 6= 0, because else f = 0 due to the radical assumption, and also that
all fi and f are not 0. In fact, if fi = 0 we can change the forcing algebra
A by a simpler one A′ omitting the variable Ti, this without changing any
property, because by Lemma 1.1(4) A = A′[Ti] is connected if and only if A′

is connected. We write fi = uip
ki and f = upk with units ui, u. Assume that

f 6∈ I. Then k < min(k1, . . . , kn). We write the forcing equation as

pk(u1p
k1−kT1 + . . .+ unp

kn−kTn + u) ,

where the exponents ki−k are all positive. Because of the radical assumption
we have k ≥ 1. But then the forcing algebra has the two components V (p) and
V (u1p

k1−kT1 + . . .+ unp
kn−kTn + u) which are disjoint. The other direction

follows from Proposition 1.1 (4), since (3) is equivalent to the existence of a
section. �

For a non-normal one-dimensional domain this equivalence can never be
true because of Corollary 6.4 below. The next trivial example shows that this
statement is also not true without the radical assumption and at the same
time shows that the condition I 6= 0 in Corollary 5.2 is necessarily.

Example 5.5. For R = K[X], the forcing algebra A = K[X,T ]/(0T −
X) ∼= K[T ] is connected. But, since (K[X] r 0)−1A = K(X)[T ]/(−X) = 0,
it follows that Spec(AK[X]r{0}) = ∅, being not connected. Hence, SpecA is
not locally connected.

In higher dimension, even for a factorial domain, the converse of Theorem
5.1 is also not true.

Example 5.6. We continue with Example 4.8 (see Figure 2 for K = R)
i.e. R := K[X,Y ] is the ring of polynomials in two variables, B := R[T ],
h := X2Y T − XY and A := B/(h). The morphism SpecA → SpecR is
surjective, since XY ∈ rad(X2Y ). We know already that SpecA has the three
irreducible components V (X), V (Y ) and V (XT − 1) that it is connected.



6. INTEGRAL CLOSURE AND CONNECTEDNESS 41

Figure 2. Corresponding to (SpecAp)R.

However, if we localize A in p := (X) ∈ SpecR, that is, if we consider the
ring Ap = AR\p, then SpecAp has just two irreducible components, namely,
V ((X)Ap) (blue plane) and V ((XT + 1)Ap) (red hyperbolic surface), because
the minimal primes of Ap are just (X)Ap and (XT+1)Ap, since the remaining
minimal prime ideal (Y ) meets R \ p, since Y ∈ R \ p. Moreover, these two
irreducible components are disjoint, because V ((X)Ap)) ∩ V ((XT − 1)Ap) =
V ((X,XT − 1)Ap) = V ((1)) = ∅. In conclusion, SpecAp is not connected.
For getting a better intuition compare Figure 2 with Figure 1.

6. Integral Closure and Connectedness

In this final section we relate the integral closure of an ideal to the univer-
sal connectedness of the forcing morphism. For a Noetherian domain, there
exists a (discrete) valuative criterion for the integral closure: The containment
f ∈ I holds if and only if for all ring homomorphisms θ : R→ D to a discrete
valuation domain D we have θ(f) ∈ ID, see [27, Theorem 6.8.3].

Definition 6.1. Let ϕ : Y → X be a morphism between affine schemes.
We say that ϕ is a universally connected if W ×X Y is connected for any affine
Noetherian change of base W → X, with W connected.

Now, we prove a criterion for belonging to the integral closure in terms
of the universal connectedness of the corresponding forcing morphism.

Theorem 6.2. Let A be a forcing algebra over a Noetherian ring R and
ϕ : Y := SpecA → X := SpecR the corresponding forcing morphism. Then
the following conditions are equivalent:

(1) f belongs to the integral closure of I, i.e. f ∈ I.
(2) ϕ is a universal submersion.
(3) ϕ is universally connected.
(4) W×X Y is connected for all change of base of the form W = SpecD,

where D is a discrete valuation domain.
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Proof. (1) ⇒ (2). Recall that a submersion is universal if it remains a
submersion under Noetherian change of base. Due to the valuative criterion
for the integral closure (see [27, Theorem 6.8.3]) and the fact that (2) can
be checked after change of base to a discrete valuation domain D (see [16,
Remarque 2.6]), we can assume that R = D and that f ∈ I and we have
to prove that ϕ : SpecA → SpecD is a submersion. But f ∈ I if and only
if there exists a section s : SpecD → SpecA, i.e. ϕ ◦ s = IdSpecD. But, it
implies that ϕ is a submersion (see proof of Proposition 1.1(4)).

(2) ⇒ (3). Let W → X be an affine Noetherian connected change of
base, then since ϕW : W ×X Y → W is a submersion, by Proposition 1.1 (5)
W ×X Y is connected.

(3)⇒ (4) is trivial.
(4) ⇒ (1). Let W = SpecD → X be a change of base, where D is a

discrete valuation domain. By the valuative criterion for integral closure it
is enough to show that f ∈ ID. First, note that f ∈ rad(ID), which is
equivalent to say that ϕW : W ×X Y → W is surjective. If the fiber over
p ∈W , (Specκ(p))×X Y were empty, then the morphism

Specκ(p)[[x]] −→ Specκ(p) −→W −→ X

would yield a contradiction, since then the pull-back (Specκ(p)[[x]]) ×X Y
would be empty (hence not connected) and κ(p)[[x]] is a discrete valuation
domain. Thus f ∈ rad(ID) and by Corollary 5.4 the connectedness of W×XY
is equivalent to f ∈ ID. �

Remark 6.3. This Theorem results to be very useful in proving that an
specific element does not belong to the integral closure of an ideal, avoiding
nontrivial computations. In fact, going back to Example 1.2 we know that
ϕ is not a submersion, therefore X does not belong to the integral closure of
(X2), which is not trivial to see just by doing computations, while proving
that ϕ is not a submersion follows directly from the clear fact that Spec A is
not connected.

Now, we prove a corollary of this theorem characterizing the property
that a fraction belongs to the integral closure (or normalization) of an integral
domain.

Corollary 6.4. Let R be a Noetherian integral domain, K = Q(R) its
field of fractions. Let r/s ∈ K with s 6= 0, let A = R[T ]/(sT+r) be the forcing
algebra and ϕ : Y := SpecA → X := SpecR the corresponding morphism.
Then r/s is integral over R if and only if ϕ is universally connected.

Proof. Suppose that r/s ∈ K(R) is integral over R. Then, there exists
an equation of the form

(r/s)n + a1(r/s)n−1 + · · ·+ an = 0,
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for ai ∈ R. Thus, after multiplying by sn, we getting

rn + a1sr
n−1 + · · ·+ snan = 0,

where ais
n−i ∈ (s)i. So, r ∈ (s). The converse in analog. In conclusion, r/s is

integer over R if and only if r ∈ (s). Finally, by the previous theorem r ∈ (s)
if and only if ϕ is universally connected. �

In our final example we show that a forcing algebra over a non-normal
curve might be connected but not universally connected. In fact the pull-back
to the normalization is already not connected.

Example 6.5. Let K be a field and consider the ring-homomorphism
K[u, v] → K[x], u 7→ x(x − 1), v 7→ x2(x − 1). The kernel of this is (u3 −
uv + v2). Let R = K[u, v]/(u3 − uv + v2). Since x2 − x − u = 0, the
extension R ↪→ K[X] is integer, but K[X] is integrally closed, therefore the
integral closure (or normalization) of R is K[X]. We consider the forcing
algebra A = R[T ]/(vT − u). It consists of a horizontal component given
by V (vT + u, vT 3 − T + 1) (check that this is a prime ideal) (red twisted
hyperbola) and the vertical component V (u, v) (black middle vertical line).
They intersect in V (u, v, T − 1), hence the forcing algebra is connected (see
Figure 3).

Figure 3

When we pull-back this situation to the normalization we get

A′ = K[x][T ]/(x2(x− 1)T + x(x− 1)) ∼= K[x][T ]/(x(x− 1)(xT + 1)) .

Now we have one horizontal component and two vertical components (gray
and black lines), and the horizontal (red) hyperbola meets exactly one of
them, hence this forcing algebra is not connected by Corollary 3.2 (see Figure
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4). Heuristically we get Figure 3 from Figure 4 by turning the plane over itself
as the base line indicates and identifying the two vertical lines.

Figure 4



CHAPTER 3

Normality and Related Properties

1. Irreducibility

Here we shall see that if A is a forcing algebra over a Noetherian integral
domain such that ht(f, f1, ..., fn) ≥ 2, where {f1, ..., fn, f} is the forcing data,
then A is an irreducible ring (i.e. A has just one minimal prime).

Theorem 1.1. Let R be a Noetherian integral domain;

A = R[T1, ..., Tn]/(f1T1 + · · ·+ fnTn + f);

h = f1T1 + · · · + fnTn + f , where f1, ..., fn, f ∈ R and J = (f, f1, ..., fn).
Assume that htJ ≥ 2, then A is an irreducible ring.

Proof. By Lemma 2.1(2) (Ch. 2), it is enough to see that for any min-
imal prime q ∈ R of J , qB is not minimal over (h), because on that case, A
has just the horizontal component, and therefore is irreducible.

Let q ∈ R be minimal over J . Then, by Remark 1.1 (Ch. 1),

htqB ≥ htq ≥ htJ ≥ 2.

Therefore qB is not minimal over (h), since by Krull’s Principal Ideal Theorem
the minimal primes over a principal ideal have height smaller or equal than
one. �

2. (Non)Reduceness

In this section we study the (non)reducedness of forcing algebras over a
reduced base ring R. First, for a base field k Lemma 3.1 shows that any forc-
ing algebra is isomorphic to a ring of polynomials over k or the zero algebra,
therefore it is reduced.

Now, if R is a local ring, let us first stay an elementary remark concerning
a generalization of the Monomial Conjecture (MC) (see Ch. 1, §4) in dimen-
sion one.

In dimension one (CM) just says that if x ∈ m does not belong to any
minimal prime ideal of R then xn /∈ (xn+1) for all nonnegative integer n. In
the next remark we will prove a generalization of this fact for a quasi-local
ring, that is, not necessarily Noetherian.

45
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Remark 2.1. Let (R,m) be a quasi-local ring and x ∈ m. Then, there
exists a positive integer n such that xn /∈ (xn+1), if and only if x is a nilpotent
or a unit.

In fact, one direction is trivial, for the other one, assume that x is neither
nilpotent nor a unit and that there exists n ∈ N and y ∈ R such that xn =
yxn+1, thus xn(1−yx) = 0, but 1−yx /∈ m, therefore it is a unit, then xn = 0,
which is a contradiction.

As we mention on section 4 of Chapter 1 (see [20, Theorem 1]) the DCS
in dimension one is equivalent to the fact that for any parameter x ∈ S, for
a one dimensional local ring S, and any power n ∈ N, xn /∈ (xn+1). Clearly,
this is a particular case of the previous Remark.

Example 2.2. Let (R,m) be a quasi-local reduced ring, which is not a
field, and f ∈ m r {0}. Then, the trivial forcing algebra A := R/(f2) is
non-reduced because clearly f ∈ nilA and by the previous Remark f 6= A. So,
there are always non-reduced forcing algebras over quasi-local reduced base
rings, which are not a field.

Now, we want to study in which generality we can guarantee the existence
of an element f ∈ R such that f /∈ (f2). Let us assume that R is Noetherian.
Then, the following Proposition gives a compact characterization of the fact
that any element f ∈ R belongs to (f2).

Proposition 2.3. A noetherian ring R is the finite direct product of fields
if and only if any element f ∈ R, holds that f ∈ (f2).

Proof. On direction is clear.
For the other, let us assume, by contradiction, that R is a Noetherian

ring which is not a finite product of fields. We want to prove that there
is an element f ∈ R such that f /∈ (f2). In fact, we can reduced to
the case of SpecR connected, because if SpecR is not connected then, due
to the Noetherian hypothesis, we can write SpecR = V (Q1) ] · ] V (Qs),
where V (Qj) ∼= Spec(R/Qs) are the connected components of SpecR. Hence,
by the Chinese Remainder Theorem, R ∼=

∏s
i=1Ri/Qi and by the previ-

ous assumption at least one of the Ri/Qi is not a field. So, it is enough
to find an fi ∈ Ri/Qi such that fI /∈ (f2i ) to obtain the desired element
f = (0, ..., fi, ..., 0) ∈ R. Now, the connectedness of SpecR it is equivalent to
saying that the only idempotents of R are trivial ones, namely, zero and one.

Lastly, choose f ∈ R neither a unit nor idempotent. Then, f /∈ f2. In
fact, by contradiction, if f = cf2, for some c ∈ R, and so cf(1 − cf) = 0,
which means that cf is idempotent. Hence, cf = 0 or cf = 1. In the first
case we have f = (cf)f = 0, and in the second case, f is a unit. Then both
cases contradicts our hypothesis on f . �

Remark 2.4. The previous proposition guarantees the existence of non-
reduced forcing algebras over any noetherian ring which is not a finite direct
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product of fields. Specifically, as before, we choose an element f ∈ R, such
that f /∈ (f2) and define A := R/(f2).

Finally, we present a more interesting example of an irreducible but not
reduced forcing algebra over an affine domain base ring R such that the
codim((f1, ..., fn), R) is arbitrary large.

Example 2.5. ConsiderR = k[x1, ..., xn−1, z]/(x1z, ..., xn+1z), h = x1T1+
· · ·+ xn+1Tn+1 + z2 and A = R[T1, ..., Tn+1)/(h). Then,

codim((x1, ..., xn+1), R) = n,

because the ring of polynomials is catenary. Besides, it is straightforward to
verify that z /∈ (h), and z3 = z2h ∈ (h). Therefore A is non-reduced.

3. Integrity over UFD

The main philosophy developed here is to study very general and rough
properties to reach on that process a deeper intuition over the more inter-
esting and fine ones. So, if we demand a forcing algebra being reduced and
irreducible, that means exactly demanding integrity. Now, we prove an in-
tegrity criterion for forcing algebras over UFD as base ring involving just the
height of the forcing elements f1, ..., fn.

Lemma 3.1. Let R be a Noetherian UFD which is not a field, J =
(f1, . . . , fn, f), where some fi 6= 0, and let A be the forcing algebra corre-
sponding to this data and B = R[T1, ..., Tn]. Then A is an integral domain if
and only if J = R, or htJ ≥ 2.

Proof. Along the proof we will use the basic fact that in a UFD the
notions of prime and irreducible element coincide. We will prove the negation
of the equivalence ((h) ∈ SpecB) ⇔ (I = R ∨ htJ ≥ 2), which is equivalent
formally to ((h) /∈ SpecB) ⇔ (I 6= R ∧ htJ ≤ 1). Now, we can written the
condition at the right side by htJ ≤ 1, assuming implicitly that htI is well
defined, i.e., I 6= R. So we will see that A is not an integral domain if and
only if htJ ≤ 1. In fact, we can assume J 6= 0 and therefore htJ = 1. Choose
a prime ideal P of R such that P contains J and htP = 1. Choose a 6= 0 ∈ P .
Now, some of the prime factors of a, say p, belongs to P and therefore P = (p),
due to the fact that both prime ideals have height one. Thus, there exist
gi, g ∈ R such that fi = pgi and f = pg, hence h = f1T1 + . . . + fnTn + f =
p(g1T1 + . . . + gnTn + g) is the product of p and an element which is not a
unit since some of the fi is different from zero. Therefore h is not irreducible,
which is equivalent of being a non prime element. In conclusion, A is not an
integral domain.

Conversely, assume that A is not an integral domain, or equivalently that
h = f1T1 + . . .+ fnTn + f is not irreducible. Hence, there exists polynomials
Q1, Q2 ∈ R[T1, . . . , Tn], not units, such that h = Q1Q2. Now, the degree of h



48 3. NORMALITY AND RELATED PROPERTIES

is the sum of the degrees of Q1 and Q2, because R is an integral domain. Then
one of the two factors has degree zero, say Q1. Comparing the coefficients we
get that each fi = Q1gi and f = Q1g, and Q2 = g1T1 + . . . + gnTn + g. In
conclusion, J ⊆ (Q1)R and therefore by Krull’s Theorem ht(J) ≤ 1. �

4. A Normality Criterion for Polynomials over a Perfect Field

Now we will try to understand under what conditions on the elements
f1, . . . , fn, f ∈ R the associated forcing algebra is a normal domain in the
case that R is the ring of polynomials over a perfect field. For some exam-
ples, results and intuition we assume a very basic and modest knowledge of
algebraic geometry, mainly relating affine varieties (see, for example [14] and
[17, Chapter I]).

Remark 4.1. If R = k[x1, . . . , xr] and h = f1T1 + . . . + fnTn + f ∈
B := R[T1, . . . , Tn], h 6= 0, then the forcing algebra A = R[T1, . . . , Tn]/(h)
is equidimensional of dimension dimA = r + n − ht((h)) = r + n − 1, since
= R[T1, . . . , Tn] is catenary and h has pure codimension one, because every
minimal prime over (h) has height one by Krull’s principal ideal theorem.
Therefore in the case that k is a perfect field we deduce from the corollary of
the Jacobian criterion (see Chapter 1) that the singular locus of the forcing
algebra is exactly the prime spectrum of the following ring

AS = A/((∂h/∂xj), (∂h/∂Ti)) = R[T1, . . . , Tn]/(h, (∂h/∂xj), (∂h/∂Ti)).

Now, (∂h/∂xj) =
∑n
i=1(∂fi/∂xj)Ti + (∂f/∂xj) and ∂h/∂Ti = fi. Thus we

get

J := (h, (∂h/∂xj), (∂h/∂Ti)) = (h,

n∑
i=1

(∂fi/∂xj)Ti + (∂f/∂xj), fi)

= (f, fi,

n∑
i=1

(∂fi/∂xj)Ti + (∂f/∂xj)),

where i, j ∈ {1, ..., n}. We can write the last set of generators in a compact
way using matrices: ∂f1/∂x1 . . . ∂fn/∂x1

...
...

∂f1/∂xr . . . ∂fn/∂xr

 ·
 T1

...
Tn

+

 ∂f/∂x1
...

∂f/∂xr

 .

We will denote by J the class of J in A.

Now we rewrite the normality condition for the forcing algebra A in terms
of the codimension of its singular locus V (J) ∈ SpecA, or in terms of the
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codimension of the corresponding closed subset V (J) ⊆ Spec(R[T1, . . . , Tn]),
which are isomorphic as affine schemes. On this section we set

I = (f, f1, ..., fn) ∈ R
and D = (∂f/∂xi, ∂fj/∂xi) for i, j ∈ {1, ..., n}. Note that J ⊆ (I +D)B. In
particular. V (IB) ∩ V (DB) ⊆ V (J) ⊆ SpecB.

First, let’s consider the trivial case R = k. By previous comments we
know that if A 6= 0 then A = k[T1, ..., Ťi, ..., Tn], so A is regular and thus a
normal domain. In conclusion, A is a normal domain if and only if all fi and
f are zero, or there exists some fi 6= 0.

Lemma 4.2. let R = k[x1, . . . , xr] be the ring of polynomials over a perfect
field k and h = f1T1 + . . .+ fnTn + f ∈ B := R[T1, . . . , Tn], with h 6= 0, and
A = R[T1, . . . , Tn]/(h). Then, the following conditions are equivalent:

(1) A is a normal ring.
(2) codim(J,A) ≥ 2, or J = A.
(3) codim(J,B) ≥ 3, or J = B.

Proof. (1) ⇒ (2) Assume that A is a normal ring, then the Serre’s
Criterion tells us that for any prime ideal q of A with htq ≤ 1, Aq is a regular
ring (remember that in dimension zero regularity is equivalent to being a
field). Now, suppose that J ( A. Then, we know that for any prime P of A
that contains J , AP is not regular, therefore htP ≥ 2, thus codim(J,A) ≥ 2.

(2) ⇒ (1) We know that A is C-M because it is the quotient of C-M
R[T1, . . . , Tn] by an ideal (h) of height one generated by exactly one element,
(see [10, Theorem 18.13]). Therefore, for any prime ideal P of A the local
ring AP is C-M. Then,

depth(AP ) = dim(AP ) ≥ min(2,dim(AP )).

Thus A satisfies the condition (S2) of the Serre’s Criterion. Besides, A satisfies
condition (R1). In fact, any prime ideal P of A of height at most 1 does not
contain J , because codim(J,A) = htA(J) ≥ 2, or J = A, hence P is not in
the singular locus of A, that means the regularity of the local ring AP .

Since, J = A if and only if J = B then, for the equivalence between (2)
and (3) we can assume that J ( A (respectively J ( B).

(2) ⇒ (3). Let P a prime ideal of B that contains J , then by hypothesis
htA(P ) ≥ 2. Let P0 $ P1 $ P2 = P a chain of primes in A, then one can see
the corresponding chain of prime ideals in B adding the zero ideal, which is
a prime ideal, Q0 = (0) $ Q1 = P0 $ Q2 = P1 $ Q3 = P2 = P , that means
codim(J,B) ≥ 3

(3)⇒ (2) Let P be a prime ideal of A that contains J , and let Q be the
prime ideal of B that correspond to P . Clearly, J ⊆ Q as subsets of B. We
know that ht(Q) ≥ 3 and (h) ⊆ Q, therefore Q contains a minimal prime ideal
of (h), say Q0, which has height one by Krull’s Principal Ideal Theorem. In
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virtue of this, we know that there exists a saturated chain of primes ideals of
B,

(0) $ Q0 $ Q1 $ Q2 ⊆ Q,
since B is a catenary ring and htQ ≥ 3, and therefore any saturated chain
of prime ideals from (0) to Q has the same length, that is, ht(Q), which is a
least three. Therefore, looking at the corresponding chain in A, and denoting
by Pi the prime ideal of A corresponding to Qi, we get P0 $ P1 $ P2 ⊆ P ,

then htP ≥ 2. In conclusion, codim(J,A) ≥ 2. �

Remark 4.3. An important fact is that for R = k[x1, . . . , xr], I an ideal
of R and B = R[T1, ..., Tn] we know that the codim(I,R) = codim(IB,B),
because by previous results we get

n+ r − codim(IB,B) = dim(B/IB) = dim((R/I)[T1, . . . , Tn]) =

dim(R/I) + n = dimR− codim(I,R) + n = n+ r − codim(I,R).

We want to find necessary and sufficient conditions for the forcing data
f1, ..., fn and f on the base ring of polynomials R = k[x1, ..., xn], such that
the associated forcing algebra turns out to be a normal domain. The previ-
ous lemma gives a condition over A and the Jacobian ideal J of the partial
derivatives of the forcing equation, which involves, as seen before, again the
forcing ideal and new forcing equations defined by the partial derivatives of
the original forcing data. This suggests that a suitable condition for normal-
ity over the base R should involve the forcing data and its partial derivatives.
The following collection of examples start to give us a good first intuition of
the phenomenon.

Example 4.4. Let k be a perfect field and let’s define R = k[x, y]; B =
k[x, y, T1, T2]; A = B/(h) and

h = xaT1 + ybT2 + xcyd,

where a, b, c and d are nonnegative integers. After computations we have that
the Jacobian ideal

J = (xa, yb, xcyd, axa−1T1 + cxc−1yd, byb−1T2 + dxcyd−1).

Let D ⊆ R be the ideal generated by all the partial derivatives of the genera-
tors of the forcing ideal I = (f1, f2, f) = (xa, yb, xcyd), i.e.,

D = (axa−1, byb−1, cxc−1yd, dxcyd−1).

By Lemma 3.1, A is a domain for any nonnegative values of the exponents.
After elementary considerations we see that codim(J,B) ≥ 3 or J = B if

and only if some of the following seven cases occur:
i) a = 0.
ii) a = 1.
iii) b = 0.
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iv) b = 1.
v) d = c = 0.
vi) c = 1 and d = 0.
vii) c = 0 and d = 1.
In fact, in any other case J ⊆ (x, y)B, and therefore codim(J,B) ≤ 2.

Moreover, it is also elementary to see that the previous seven cases are exactly
the ones in which the ideal I +D is equal to R.

In conclusion, in virtue of the previous Lemma, A is a normal domain if
and only if I +D = R.

Remark 4.5. Suppose that k is an algebraically closed field. Contin-
uing with the notation of the former example, let’s write V = V (I) ⊆ k2,
W = V (D) ⊆ k2, Y = V (h) ⊆ k4 and S = V (J) ⊆ k4 denote the corre-
sponding affine varieties and π : S → V the natural projection to the first
two coordinates. Geometrically, Example 4.4 suggests that the normality of
the variety X (which is equivalent to the normality of the forcing algebra,
see [17, Exercise I.3.17]), is related to the intersection of V and W , because
V ∩ W = ∅, if and only if I + D = R. In fact, this is true for arbitrary
polynomial data f1, f2 and f ∈ R as we will see.

First, by Lemma 3.1, A is an integral domain if and only if htI ≥ 2 or
I = R. So, let’s assume that A is a domain and I ( R, otherwise V = ∅ and
J = B, being A normal, by Lemma 4.2. Thus, htI ≥ 2, which means that
the minimal prime ideals over I are just finitely many maximal ideals, since
dimR = 2. But, by the Nullstellensatz (see [1, Exercise 7.14]) this points
correspond exactly to the points of V . Therefore, let’s write V = {v1, ..., vr}.

Moreover, let S be the singular locus of Y in the sense that, if we consider
S as a subvariety of Y . By previous comments S is the finite union of its
(singular) fiber varieties Svi = π−1(vi). Now, by Lemma 4.2, Y is a normal
variety if and only if codim(S,K4) ≥ 3 (which is equivalent to codim(S, Y ) ≥
2).

Assume, that V ∩W 6= ∅, i.e., I + D ( R, and let’s prove that Y is not
normal. In fact, we know that J ⊆ (I +D)B. Therefore, by Remark 4.3

codim(S, k4) = codim(J,B) ≤ codim((I +D)B,B) = codim(I +D,R) ≤ 2,

implying that Y is not normal.
Conversely, assume that V ∩W = ∅. Then, for any point v ∈ V , there

exists some ∂fi(v)/∂xj 6= 0, because if not all the partial derivatives of the
forcing data would be zero at v (the elements ∂f(v)/∂xj are also zero, because
we can write them as a linear combinations of the ∂fi(v)/∂xj , see Remark
4.1), implying that v ∈W , but that is impossible.

Clearly, Sv = V (G), where v = (a, b) ∈ k2 and

G = (x− a, y − b, ∂f1(v)/∂xT1 + ∂f2(v)/∂xT2 + ∂f(v)/∂x,
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∂f1(v)/∂yT1 + ∂f2(v)/∂yT2 + ∂f(v)/∂y).

But, under the condition that some ∂fi(v)/∂xj 6= 0, it is elementary to see
that codim(G,B) ≥ 3. In conclusion, codim(Sv, k

4) ≥ 3, implying that
codim(S, k4), being the minimum of the codimension of its singular fibers,
is bigger or equal than three, which means the normality of Y .

Besides, if we move to the next dimension, i.e., R = k[x1, x2, x3] and
B = R[T1, T2, T3], then, it is possible to see in a natural way that a necessary
condition for the normality of Y is that (dimV ∩W ) < 1 (here we assume that
the dimension of the empty set is −1). Because, suppose by contradiction that
dimV ∩W ≥ 1. For any point v ∈ V ∩W , by Remark 4.1 and Lemma 3.1 (Ch.
1) the fiber Sv ∼= A3

k. Therefore, (V ∩W )×A3
k ⊆ S. But, dim(V ∩W )×A3

k ≥
1 + 3 = 4, and so, dimS ≥ 4, thus, codim(S, k6) ≤ 2, implying that Y is
not normal. Note that this argument works independent from the number of
variables. However, this case was very suitable to obtain the right intuition
about the desired condition i.e., dim(V ∩W ) < r − 2.

Heuristically, one can compute the dimension of S by knowing the general
behavior of the dimension of the fibers Sv and the dimension of the base space
V . Now, by Lemma 3.1 (Ch. 1) the fibers Sv have maximal dimension exactly
when the rank of the forcing matrix is minimal, i.e., when the point v belongs
to W ∩ V . Therefore, to guarantee that the dimension of Y is not so big
(in order to maintain the codimension big enough), we need to bound the
dimension of the subvariety of V with maximal dimensional singular fibers,
i.e., the dimension of V ∩W . In fact, assuming that Y is irreducible, the right
necessary and sufficient condition for Y being an (irreducible) normal variety
is that (dimV ≤ r − 2 and) dimV ∩W ≤ r − 3, where V,W ⊆ kr.

First, in order to get a better intuition about the fibers, the following
proposition tells us that the points of SpecR with fibers completely singular
are exactly the points of V (I) ∩ V (D).

Proposition 4.6. Let R = k[x1, . . . , xr] be the ring of polynomials over a
perfect field k; B = R[T1, . . . , Tn]; h = f1T1+· · ·+fnTn+f ; f, f1, . . . , fn ∈ R;
A = B/(h); I = (f, f1, . . . , fn); D = (∂f/∂xj , ∂fi/∂xj) and

J := (h, (∂h/∂xj), (∂h/∂Ti)).

Let ϕ : Y = SpecA → X = SpecR be the forcing morphism. Choose a point
x ∈ Y with nonempty fiber ϕ−1(x). Then x ∈ X has fiber completely singular
i.e., ϕ−1(x) ⊆ V (J) ∈ Y if and only if x ∈ V (I +D) ⊆ X.

Proof. We know from the Corollary of the Jacobian Criterion that for
any prime ideal y ∈ Y , Ay is not regular if and only if y ∈ V (J). Let
x ∈ V (I +D) and Q ∈ ϕ−1(x). Then, (I +D)B ∈ Q and so J ∈ Q, meaning
that Q ∈ V (J).
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Conversely, let’s consider a point x ∈ X, such that ϕ−1(x) ⊆ V (J). Now,
it is elementary to see that the last condition means that ϕ−1(x) = V (Jx),
where

ϕ−1(x) = A = k(x)[T1, . . . , Tn]/(f1(x)T1 + . . .+ fn(x)Tn + f(x)),

and Jx = (
∑n
i=1(∂fi(x)/∂xj)Ti + (∂f(x)/∂xj), for i, j ∈ {1, ..., n}.

Firstly, if fi /∈ x, for some i, then the fiber ϕ−1(x) is completely regular,
because, by previous comments (Ch. 1 §2) ϕ−1(x) ∼= An−1k(x).

Secondly, if f /∈ x, then f(x) = 0. But, we know that f1(x) = · · · =
fn(x) = 0, therefore the fiber is empty, since h = f(x) 6= 0 ∈ k(x). But, it
contradicts our hypothesis. Note that, until now, we know that h = f1(x)T1+
. . .+ fn(x)Tn + f(x) = 0.

Thirdly, suppose that ∂fi/∂fj /∈ x, for some i, j ∈ {1, ..., n}, that means,
∂fi(x)/∂fj = 0. We consider two cases: Suppose that ∂f(x)/∂fj 6= 0. Then,
since h = 0, the ideal Q = (T1, ..., Tn) ∈ ϕ−1(x), but

n∑
i=1

(∂fi(x)/∂xj)Ti + (∂f(x)/∂xj) /∈ Q.

Therefore Q /∈ V (Jx), a contradiction. In the second case, i.e., ∂f(x)/∂fj =
0,, the prime ideal Q′ = (T1, ..., Ti − 1, ..., Tn) ∈ ϕ−1(x), but

n∑
i=1

(∂fi(x)/∂xj)Ti + (∂f(x)/∂xj) =

n∑
i=1

(∂fi(x)/∂xj)Ti /∈ Q′.

So, again, Q′ /∈ V (Jx), a contradiction.
Lastly, if ∂f(x)/∂xj 6= 0, for some j, then, due to the last results

n∑
i=1

(∂fi(x)/∂xj)Ti + (∂f(x)/∂xj) = ∂f(x)/∂xj ∈ Jx,

thus ϕ−1(x) = V (Jx) = ∅. But, this is not possible, because the fiber is not
empty.

In conclusion, ϕ−1(x) ⊆ V (J) ∈ Y , as desired. �

Now, we present the statement of the normality criterion for forcing alge-
bras over the ring of polynomials with coefficients in a perfect field.

Theorem 4.7. Let R = k[x1, . . . , xr] be the ring of polynomials over a
perfect field k; B = R[T1, . . . , Tn]; f, f1, . . . , fn ∈ R; I = (f, f1, . . . , fn);D =
(∂f/∂xj , ∂fi/∂xj), for i, j ∈ {1, ..., n}. Then, the forcing algebra for this data
A is a normal domain if and only if the following two conditions hold:

(a) codim(I,R) ≥ 2, or I = R.
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(b) codim(I +D,R) > 2, or I +D = R.

Moreover, in the case that all fi = 0, then (b) is a necessary and sufficient
condition for A being a normal ring.

Proof. We have already proved in Lemma 3.1 that (a) is a necessary and
sufficient condition for A being an integral domain. Let’s prove that (b) is
equivalent to normality. Effectively, following Lemma 4.2 we just need to see
the condition (b) is equivalent to codim(J,B) > 2, or J = B. Let’s denote the
last condition by (b’). By Remark 4.1 we know that J ⊆ (I +D)B. Suppose
that (b’) holds. First, if J = B, then (I + D)B = B, implying I + D = R.
Second, if codim(J,B) > 2, then by Remark 4.3 we get

codim(I +D,R) = codim((I +D)B,B ≥ codim(J,B) > 2.

Conversely, assume that (b) holds and J 6= B. We prove that codim =
(J,B) > 2. Let Q be a prime ideal of B that contains J . First, assume that
(I +D)B ⊆ Q, then I +D 6= R, therefore codim(I +D,R) > 2, so, again by
Remark 4.3 codim((I + D)B,B) > 2, which implies that codim(Q,B) > 2.
Second, suppose that I+D * Q, then necessarily one of the partial derivatives
∂f/∂xj or ∂fi/∂xj is not contained in Q, because IB ⊆ J ⊆ Q. In fact, there
exits some b ∈ 1, . . . , n and some c ∈ 1, . . . , r with ∂fb/∂xd /∈ Q, cause if not,
all ∂fi/∂xj would be contained in Q and also the elements

∑n
i=1(∂fi/∂xj)Ti+

∂f/∂xj and therefore ∂f/∂xj for any j, thus D would be also contained in
J , which is not the case. For simplicity suppose that Q not contained the
element α := ∂f1/∂x1 and let’s write l :=

∑n
i=1(∂fi/∂x1)Ti + ∂f/∂x1. Let ψ

be the following homomorphism of R(α) algebras

ψ : B(α) u R(α)[T1, . . . , Tn] −→ R(α)[T2, . . . , Tn],

that sends T1 to g := −α−1(
∑n
i=2(∂fi/∂x1) + ∂f/∂x1) and Tj to Tj , for

j ≥ 2. Clearly, ψ is surjective. Moreover, ker(ψ) = (T1 − g). To see this let
S ∈ ker(ψ). Then using the binomial expansion we can write it in the form:

S = S(x1, . . . , xr, (T1 − g) + g, . . . , Tn) = S0(x1, . . . , xr, (T1 − g), . . . , Tn)+

S(x1, . . . , xr, g, . . . , Tn),

= S0(x1, . . . , xr, (T1 − g), . . . , Tn) + ψ(S)

= S0(x1, . . . , xr, (T1 − g), . . . , Tn),

with S0 being divisible by T1, which implies that the former expression is
divisible by T1 − g. Thus S ∈ (T1 − g).

On the other hand, in the ring R(α)[T1, . . . , Tn] we know that (T1 − g) =
(l), therefore ψ induces an isomorphism between R(α)[T1, . . . , Tn]/(l) and
R(α)[T2, . . . , Tn]. Denote by Q0 the image under ψ of QR(α)[T1, . . . , Tn], and
assume for the sake of contradiction that codim(Q,B) ≤ 2 then we have the
following chain of inequalities:

d := dim(B/Q) = dimB − codim(Q,B) = n+ r − codim(Q,B) ≥ n+ r − 2.
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Besides, B is a Jacobson ring, hence there exists a maximal ideal m
containing Q such α /∈ m, otherwise α would be contained in the intersection
of all the maximal ideals containing Q, which is Q, absurd. Now, let’s consider
a saturated chain of primes ideals from Q to m, which exits in virtue of Zorn’s
lemma. Besides, this chain has length exactly d because B/Q is an affine
domain and therefore, d is the length of any saturated chain of primes on it
(see fundamental results on Chapter 1). Then,

Q = Q0 $ Q1 $, . . . ,$ Qd−1 $ Qd = m.

Now, we can consider this chain in R(α)[T1, . . . , Tn], because no Qi con-
tains α. This shows that dim(R(α)[T1, . . . , Tn])/Qe ≥ d and, in fact, the
equality holds because we are localizing and thus the dimension cannot be
bigger that the dimension of the original ring. Besides, ψ induces an iso-
morphism between R(α)[T1, . . . , Tn]/Qe and R(α)[T2, . . . , Tn]/Q0, then finally,
recalling that codim(I,R) ≥ 2 and that l ∈ Q we get

d = dim(R(α)[T1, . . . , Tn])/Qe) = dim(R(α)[T2, . . . , Tn])/Q0) ≤

dim(R(α)[T2, . . . , Tn])/Ie) ≤ dim(R[T2, . . . , Tn])/Ie)

= dim((R/I)[T2, . . . , Tn]) = dim(R/I) + n− 1 =

dimR− codim(I,R) + n− 1 ≤ r + n− 1− 2 < n+ r − 2.

Which is a contradiction with the former estimate of d. Finally, if all fi = 0
then J = I +D and then from the fact that codim((I +D), R) = codim((I +
D), B) we deduce from Lemma 4.2 that condition (b) is equivalent to the
normality of A.

�

Now, we state a direct application of the previous Theorem to normal
affine varieties. As said before, our convention is that dim ∅ = −1.

Corollary 4.8. Let R = k[x1, . . . , xr] be the ring of polynomials over
an algebraically closed field k; B = R[T1, . . . , Tn]; f, f1, . . . , fn ∈ R; I =
(f, f1, . . . , fn);D = (∂f/∂xj , ∂fi/∂xj). Assume that (h) is a radical ideal,
where h = f1T1 + · · · + fnTn + f. Let’s denote by V = V (I) ⊆ kr and W =
V (D) ⊆ kr the affine varieties defined by I and D, respectively. Then, X =
V (H) ⊆ kn+r is a normal (irreducible) variety if and only if the following two
conditions holds simultaneously

(1) dimV ≤ r − 2.
(2) dim(V ∩W ) < r − 2.

Moreover, in the case that all fi = 0, then (2) is a necessary and
sufficient condition for X being a normal (irreducible) variety.

Proof. Recall that a variety is normal if for any point x ∈ X, the stalk
OX,x is a normal domain (see [17, Exercise I.3.17]). Since (h) is a radical
ideal, we know that the forcing algebra A = B/(h) is exactly the ring of
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coordinates of X. Since X is affine and normality is a local property we have
that X is a normal (irreducible) variety if and only if A is a normal domain.
Besides, from Hilbert’s Nullstellensatz we get

dimV = dim(R/I(V )) = dim(R/ rad(I)) = dim(R/I)

= dimR− codim(I,R) = r − codim(I,R),

and analogously

dim(V ∩W ) = r − codim(I +D,R).

From this and the fact that V = ∅ (or V ∩W = ∅), if and only if I = R (or
I + D = B), we rewrite the conditions (a) and (b) of the former theorem as
(1) and (2). �

As a comment, we say that the discussion beginning at Example 4.4 is
essentially the way in which the above criterion of normality was discovered.
However, the formal proof that we present, do not give explicitly more in-
tuition and understanding of the phenomenon that the discussion above. In
fact, we can say informally, that the “right proof” was mainly a suitable col-
lection of examples, in which we increase our intuition and generality step by
step. Moreover, the final proof was, in some sense, a “natural” consequence
of the intuition that we got by means of the examples.

Moreover, and moving us for a while into the philosophical understand-
ing of mathematics, this criterion is an example of a theorem of mathematics,
who was discovered by considering a “right” sequence of examples, more than
doing formal and abstract considerations. It suggests the possibility of explor-
ing a “theory of examples” in mathematics, in which we study the examples
and sequences of examples as formal objects, and when these sequences of
examples “converge” to “more general” examples (i.e., theorems). And con-
versely, how an specific example can be “approximate” by a sequence of other
ones. This could give deep understanding of how the mathematical discovery
process works beyond the mathematical formalism.

Lastly, in order to support the former intuition we dedicate the next pair
of sections to study two interesting and enlightening examples.

5. An Enlightening Example

In this section we study an specific example of a forcing algebra with
several forcing equations and we explore the properties studied until now.
This example shows how rich and interesting could be the formal study of
forcing algebras on its own.

Let R = k[x, y] be the ring of polynomials over a (perfect) field k, B =
R[T1, T2], A = B/H, where
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H = (h1, h2) = (xT1 + yT2, yT1 + xT2) =

((
x y
y x

)
·
(
T1
T2

))
.

The determinant of the associated matrix M is x2 − y2 = (x+ y)(x− y).
It is easy to check that h1 is irreducible and that h2 does not belong to the
ideal generated by h1. Therefore h1, h2 ⊆ B is a regular sequence and hence,
by Proposition 3.3 H has pure codimension 2.

Let P be a minimal prime of H. Then, by a previous remark, P contains
the elements detMTi = (x − y)(x + y)Ti for i = 1, 2. If detM /∈ P , then
Ti ∈ P , and therefore P = (T1, T2). Now, assume that detM ∈ P , then
x − y ∈ P or x + y ∈ P . In the first case, h1 − T1(x − y) = y(T1 + T2)
should be in P . But, if y ∈ P then x = (x − y) + y ∈ P , which implies that
P = (x, y). If T1 + T2 ∈ P then it is easy to check that P = (x− y, T1 + T2),
since this is a prime ideal containing H. On the other hand, if x+y ∈ P , then,
similarly we see that P = (x, y), or P = (x + y, T1 − T2). In conclusion, the
minimal primes of H (which are, in fact, the associated primes of H, because
A is a Cohen-Macaulay ring) are the four ideals P1 = (T1, T2), P2 = (x, y),
P3 = (x− y, T1 + T2) and P4 = (x+ y, T1 − T2).

This example shows that Theorem 1.1 is false for several forcing equations,
since SpecA is not an irreducible space but the ideal generated by the forcing
data (x, y) has height two.

Let Vi = V (Pi) ⊆ k4 be the affine variety define by Pi, which correspond
to the irreducible components of V = V (H). Now, the intersections of any
couple of this components correspond to singular points of V (we assume for
a while that k is algebraically closed, and we replace H by radH in order to
work with the corresponding variety V ), because the ring of coordinates of
V localized at the maximal ideal corresponding to such a points has at least
two irreducible components and therefore it is not an integral domain, in
particular, it is not a regular local ring, since local regular rings are domains.

This is a way to see geometrically the non-normality of V , because the
normality is a local property and the localization at these intersection points,
say p ∈ Spm(A), is not a normal ring. In fact, a local ring has, clerarly, con-
nected spectrum, therefore Ap cannot be a direct product of normal domains
(Ch. 2 §1). Besides, by the former comment, Ap cannot be neither a normal
domain.

Returning to our computations, we see that the intersection of these irre-
ducible components are, in general, defined by lines and, in two cases, defined
by just one point. In fact, V1 ∩ V2 = V (x, y, T1, T2);V1 ∩ V3 = V (T1, T2, x −
y);V1∩V4 = V (T1, T2, x+y);V2∩V3 = V (x, y, T1+T2);V2∩V4 = V (x, y, T1−T2)
and V3 ∩ V4 = V (x, y, T1, T2).

Furthermore, by Proposition 1.1 (Ch.2), SpecA is connected, since we
are in the homogeneous case. Moreover, in relation with Lemma 2.1 (Ch.2),
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V (P1) is an horizontal component, V (P2) a vertical component and V (P3) and
V (P4) behave like “mixed” components i.e., they do not dominate the base nor
are they the preimage of a subset of the base. Besides, SpecA is also locally
(over the base) connected because every pair of minimal components have
non-empty intersection and the elementary fact that the minimal primes of a
localization are exactly the minimal primes of the original ring not intersecting
the multiplicative system.

In the case that k is a perfect field, we can use also the Jacobian Criterion
in order to prove again tha A is not a normal ring. In fact, by Proposition
3.3, the pure codimension of H is two, since {h1, h2} is a regular sequence.
So, the singular locus in SpecA is given by the 2× 2 minors of the Jacobian
matrix defined by the partial derivatives of the hi, that is,

J =
(
T 2
1 − T 2

1 , x
2 − y2, yT1 − xT2, xT1 − yT2

)
.

Thus in order to test normality we should find the codimension of J in A and
determine if it is bigger or equal than two. Since the pure codimension of H
is two we can translate our problem to the ring of polynomial in four variables
B = k[x, y, T1, T2] and to test if the corresponding Jacobian ideal

J0 =
(
T 2
1 − T 2

1 , x
2 − y2, yT1 − xT2, xT1 − yT2, h1, h2

)
has codimension bigger or equal to four (in general, the codimension of a prime
ideal decreases in n, if we mod out by ideals of pure codimension n, mainly
because an affine domain is catenary and its dimension is the length of any
maximal chain of prime ideals). But, after some computations we can show
that the prime ideals that contain J0 are exactly the ideals defining the vari-
eties corresponding to the intersections of pairs of the irreducibles components
of V . That is, (x, y, T1, T2), (T1, T2, x− y), (T1, T2, x+ y), (x, y, T1 + T2) and
(x, y, T1 − T2). Therefore codim(J0, B) = 3, and then, codim(J0, A) = 1 < 2,
implying that A does not satisties Serre’s condition (R1). Hence, by Serre’s
Normality Criterion A is not a normal ring. Moreover, by the same reason
B/ radH is not a normal ring, and this is equivalent to the non-normality of
the variety V (H) ⊆ k4.

Geometrically, if k is an algebraic closed field, it means just that the sin-
gular points of V , which correspond to the maximal ideals containing J0, are
exactly the points in the intersections of the different irreducible components
of the variety, which correspond to the geometrical intuition of singularities.

This example suggests the following conjecture.

Conjecture 5.1. In the homogeneous case, assume thatR = k[x1, ..., xr],
and suppose H = (h1, ..., hm) = P1∩ ...∩Ps, where Pi are the minimal primes,
for i = 1, ..., s. Then V (Pi) ∩ V (T1, ..., Tn) 6= ∅.
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6. An Example of Normalization

On this section we will compute explicitly the normalization of a forcing
algebra by elementary methods illustrating how good examples lead us in a
natural way to the study of general basic properties of normal domains.

Let k be a perfect field. Our example is a particular case of the Example
4.4. Let R = k[x, y], B = R[t, s], A = B/(h), where h = x2t+ y2s+xy. Now,
with the notation of section 3, I = (x2, y2, xy), D = (x, y), and so, I + D =
(x, y). By Theorem 4.7 A is a non-normal domain, because codim(I,B) ≥ 2,
but codim(I + D,B) = 2. Besides, the integral closure, or normalization of
A, A is a module-finite extension of A (in general, this is true for finitely
generated algebras over complete local rings, see [27, Exercise 9.8]).

Now, we will give an explicit description of A as an affine domain.
First, let K = K(A) be the field of fractions of A and let u = tx/y ∈ K.

Then, if we consider the forcing equation h in K[t, s], we get the following
integral equation for u, after multiplication by t/y2:

(tx/y)2 + (tx/y) + st = 0.

Let A′ = A[u] be the A−subalgebra of K generated by u. So, we rewrite
h considered in A′, by means of yu = xt, to obtain the equation 0 = h =
y(xu+ ys+ x). But, y 6= 0, therefore xu+ ys+ x = 0.

Let C = k[X,Y, T, S, U ] be the ring of polynomials. Define φ : C →
A′ the homomorphism of k−algebras sending each capital variable into its
corresponding small variable. Note that from the previous considerations the
ideal P = (Y U −XT,XU + Y S +X,U2 +U + TS) ⊆ kerφ. We will see that
P = kerφ. Effectively, let’s write E = k[X,Y, U, T ]/(Y U −XT ). Then, E is
a forcing algebra and by Theorem 4.7 is a normal domain.

First, we prove that P is a prime ideal. DefineQ = K(E), then, informally
if we consider the equations

XU + Y S +X = U2 + U + TS = 0

in the variable S and solve them, it lead us to obtain the equality S = −(U2+
U)/T = −(XU +X)/Y in a “suitable” field of fractions. But, in fact, it hods
that

−(U2 + U)/T = −(XU +X)/Y ∈ Q,
because

−Y (U2 + U) = −TXU −XT = −T (XU +X) ∈ D
, due to the fact that Y U = XT ∈ E. Write S′ = −(U2 + U)/T = −(XU +
X)/Y ∈ Q and consider the natural homomorphism ψ : E[S] → E[S′] ⊆ Q,
where E[S] denote the ring of polynomials in the variable S. We will prove
that kerψ = (XU + Y S +X,U2 + U + TS). For that we need the following
basic lemma about normal domains:
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Lemma 6.1. Let R be a normal domain, q ∈ K(R),

I = (bx− a ∈ R[x] : q = a/b; a, b ∈ R},

and (R : q) = {b ∈ R : bq ∈ R} be the denominator ideal. Consider the
homomorphism of R−algebras

ϕ : R[x]→ R[q] ⊆ K(R),

sending x to q. Then the following holds:

(1) If q /∈ R, then codim((R : q), R) = 1.
(2) Suppose that (R : q) = (b1, ..., bm) ∈ R, such that q = ai/bi, for

some ai ∈ R. Then, I = (b1x− a1, ..., bmx− am).
(3) kerϕ = I.

Proof. (1) It is a well known fact that any normal Noetherian domain is
the intersection of its localizations on primes of height one (see [10, Corollary
11.4]). We argue by contradiction. If codim((R : q), R) ≥ 2, then (R : q) is
not contained in any prime ideal P ⊆ R of height one. In particular, there
exists for every such prime ideal P an element bP /∈ P , but bP ∈ (R : q),
meaning that there is aP ∈ R, with q = aP /bP ∈ RP . In conclusion, q ∈
∩htP=1RP = R.

(2) Let bx − a ∈ I. That means, in particular, that b ∈ (R : q). So, we
can write b = c1b1 + · · · + crbr ∈ R, for some ci ∈ R, i = 1, ..., r. Now, let
ai ∈ R be elements such that q = ai/bi. Since,

a = bq =

n∑
i=1

cibiq =

n∑
i=1

ciai,

it is straightforward to verify bx− a =
∑r
i=1 ci(bix− ai), as desired.

(3) Clearly I ⊆ kerϕ. For the other containment, let f ∈ kerϕ we argue
by induction on the degree of f . Write f = vnx

n + · · ·+ v0. The case n = 1
is clear. So, assume n ≥ 2. First, we know that

vnq
n + · · ·+ v0 = 0 ∈ K(R),

then after multiplying by vn−1n , we get the integrity equation for vnq,

(vnq)
n + vn−1vn(vnq)

n−1 + · · ·+ v0v
n−1
n = 0.

So, vnq ∈ R, because R is a normal domain. Therefore, there exists d ∈ R
such that q = d/vn. Now, f −xn−1(vnx− d) ∈ kerϕ, and it has lower degree.
Thus, by the induction hypothesis f − xn−1(vnx − d) ∈ I, and then f ∈ I,
because vnx− d ∈ I. �

We continue with our discussion, by abuse of notation we write with the
same capital letters its classes in E. Now, we know that Y, T ∈ (E : S′).
Besides, (X,T ) ∈ E in a prime ideal of codimension one in E, therefore in
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virtue of Lemma 6.1(1), (Y, T ) = (E : S′). Hence, applying again Lemma
6.1(2)-(3) we see that

kerψ = ((Y )S + (XU +X), (T )S + (U2 + U)),

as desired. In conclusion,

E[S]/(XU + Y S +X,U2 + U + TS) ∼= E[S′]

is an integral domain, therefore

C/P ∼= E[S]/(XU + Y S +X,U2 + U + TS)

so is.
On the other hand, since the extension A → A′ is integral, both rings

have the same dimension (it is a direct consequence from the Going Up, see
[10, Proposition 4.15]). But, dimA = dimB − ht(h) = 3, and then

3 = dimA′ = dimC/ kerφ = 5− ht(kerφ),

implying ht(kerφ) = 2. Besides, it is easy to check that P ⊆ kerφ is a (prime)
ideal of height strictly bigger that one, therefore both ideals coincide. Finally,
we can apply Corollary 1.3 to the affine domain C/P . After computations we
verify that

(U + 1)(2U + 1), U(2U + 1), U(U + 1) + ST, ST ∈ J,
where J denotes the Jacobian ideal, defining the singular locus of C/P . But,
easily we check that

C = ((U + 1)(2U + 1), U(2U + 1), U(U + 1) + ST, ST ),

therefore the singular locus is empty and then C/P is regular, and in partic-
ular, normal. In conclusion, an explicit description of the normalization of A
as an affine ring is

A ∼= k[X,Y, T, S, U ]/(Y U −XT,XU + Y S +X,U2 + U + TS).

Remark 6.2. A next natural step would be to compute the normalization
for forcing algebras with forcing equations of the form h = xnt+ yn + xy, for
n ≥ 2. However, just for the case n = 3, new methods seem to be needed. In
particular, we get an ideal

P = (Y U −X2T,XU +X + Y 2S,U2 + U +XY ST ).

But, in order to apply Lemma 6.1, the most challenging part appears to be
finding an explicit description of the generators of the corresponding denom-
inator ideal, cause

S′ = −(X + UX)/Y 2 = −(U2 + U)/XY T,

and therefore we just know that Y 2, XY T ∈ (D : S′), where

E = k[X,Y, U, T ]/(Y U −X2T ).
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But, on this case the ideal (Y 2, XY T ) is not prime as in the argument before
where we get the prime ideal (X,Y ) as denominator ideal.

Finally, we mention that this section suggests on its own a humble way
for forthcoming research on computing the normalization of forcing algebras.



CHAPTER 4

The Socle-Parameters Conjecture

b

1. Introduction

The results and methods that we present in this chapter have their origins
in the work of J. D. Vélez. First, the idea of proving the DSC by means of
annihilators started in his thesis (see [42, Lemma 3.1.2.] and [40]). The
reduction to the case where S = T/J , and T is a Gorenstein local ring and J
is a principal ideal was stated in a private communication from J. D. Vélez to
M. Hochster in 1996, and appears more explicitly in [41], and in the Master’s
Thesis of L. Junes (see [28]). Independently, similar results were obtained by
J. Strooker and J. Stückrad (see [39]).

Besides, the new aspects our results are essentially the following:
Firstly, we present an equivalent form of the DSC in terms of an estimate

of the difference of the lengths of the two first Koszul homology groups of
quotients of Gorenstein rings by principal zero-divisor ideals. This approach
was obtained by us as a natural consequence of J. D. Vélez’ former work and
as the former series of references show. There is a similar result, obtained
independently, although in a rather different context i.e., for homomorphic
images of unramified equicharacteristic regular local rings by complete inter-
section and almost complete intersection ideals. due to S.P. Dutta and P.
Griffith (see [9, Theorem 1.5]).

Secondly, this new equivalent form of the DCS is presented in two differ-
ent, but equivalent ways: the former one concerning homological estimates of
Gorenstein local rings and a second one, and entirely new form, involving a
condition in terms of liftings of socle elements and zero divisors on Gorenstein
local rings (see section 6). This condition helps us to perform more explicitly
elementary computations (see proof of Proposition 7.1).

2. Preliminary results

Let (R,m) ↪→ S be a module finite extension. Let s1, ..., sn ∈ S be genera-
tors of S as an R−module. Then, there exist monic polynomials fi(yi) ∈ R[yi]
such that fi(yi) = ymii + ai1y

ni−1
i + · · · + aimi , aij ∈ R and fi(yi) = 0. One

63
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can define a homomorphism of R−algebras from

T := R[y1, ..., yn]/(f1(y1), ..., fn(yn))

to S sending each yi to si. If J denotes the kernel of this map, S ∼= T/J .
Finally, since dimT = dimR = dimT/J , by reason of the finiteness of the
extension, J should be contain in a minimal prime ideal, that means, htJ = 0.
Later we will develop all the necessary facts in order to prove that, if the
residue field is algebraically closed, then we can reduce to the case where
aij ∈ m.

Remark 2.1. Let R ↪→ S be a finite extension of Noetherian rings,
where (R,m) is local. Then the maximal spectrum of S, Specm S, is equal
to V (mS) ⊆ SpecS. In fact, since R/m ↪→ S/mS is finite, dimS/mS =
dimR/m = 0. Therefore S/mS is Artinian. Hence Specm S/mS = SpecS/mS
is finite. Now, let η ∈ Specm S then dimR/(R ∩ η) = dimS/η = 0. Hence
R/R∩η is a field (a domain of dimension zero), and R∩η = m. Consequently
Specm S = V (mS).

Lemma 2.2. Let (R,m, k) be a local complete ring and R ↪→ S a finite
extension. Assume that SpecS = V (mS) = {η1, ..., ηn}. Then S is naturally
isomorphic, as a ring, to Sη1 × · · · × Sηn .

Proof. By Remark 2.1 and the comments made at the beginning of this
section, S/mS = (S/mS)η1 × . . . × (S/mS)ηn . But this is equivalent to the
existence of idempotent orthogonal elements e1, ..., en ∈ S/mS, which means
that, e2i = ei,

∑n
i=1 ei = 1 and eiej = 0 for all i 6= j. In fact ei /∈ ηi

and ei ∈ ηj for all i 6= j. Let p(t) = t2 − t ∈ S[t]. Then p(t) = (t −
ei)(t− (1− ei)) ∈ (S/mS)[t] for all i, and (t− ei, t− (1− ei)) = (1), because
(t−ei)−(t−(1−ei)) = 1−2ei and ei(t−ei)−ei(t−(1−ei)) = −e2i = −ei, then
1 ∈ (t− ei, t− (1− ei)). By Hensel’s Lemma (see [10, Theorem 7.18.]) there
exist linear monic polynomials t− Ei, t−Di ∈ S[t] such that t− Ei = t− ei
and t − Di = t − (1 − ei) in (S/mS)[t] (i.e. Ei = ei and Di = 1 − ei) and
p(t) = (t−Ei)(t−Di). Let’s fix such Ei ∈ R for i = 1, ..., n−1. Then p(Ei) =
E2
i −Ei = 0, that is, E2

i = Ei. Besides, for i 6= j, (EiEj)
n = Eni E

n
j = EiEj ∈

mS. Thus, for any maximal ideal of S, say ηr, EiEj/1 ∈ ∩nm=1(ηiSηi)
n ⊆ Sηi ,

because mS ⊆ ηi by Remark 2.1. Therefore, by Krull’s Intersection Theorem
∩nm=1(ηiSηi)

n = (0) (see [10, Corollary 5.4.]). Hence, there exists s /∈ ηi
such that sEiEj = 0, which means that (0 : EiEj) * ηr and that holds for
all maximal ideals ηr. In conclusion, (0 : EiEj) = S, so EiEj = 0. Define

En = 1−
∑n−1
i=1 Ei. Then

E2
n = 1− 2(

n−1∑
i=1

Ei) + (

n−1∑
i=1

Ei)
2 = 1− 2(

n−1∑
i=1

Ei) +

n−1∑
i=1

E2
i = 1−

n−1∑
i=1

Ei = En,
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and

EjEn = Ei −
n−1∑
i=1

EjEi = Ej − E2
j = 0,

for all j < n, and En = 1 −
∑n−1
i=1 Ei = 1 −

∑n−1
i=1 ei = en. Therefore

{E1, ..., En} is a set of idempotent orthogonal elements for S.
Now, Ei ∈ ∩i 6=jηi r ηj , because Ei = ei ∈ ∩i6=jηi r ηj . So, SEi =

S[e−1i ] is a local ring with maximal ideal ηei because ηi is the only maximal
ideal not containing it. Then S[ei] ∼= Sηi . Furthermore, there are natural
homomorphism of rings α : S → SEi sending Ei → E2

i = Ei. So α send Ei
to the unity on SEi, and then α induces a homomorphism from SEI to SEi
which is clearly bijective. Thus, SEI

∼= SEi. In conclusion, there is a natural
isomorphism as follows S ∼= ⊕ni=1SEi

∼= ⊕ni=1SEi
∼= ⊕ni=1Sηi .

�

Corollary 2.3. Let (R,m, k) be a local ring with algebraically closed
field k and B = R[x]/(F (x)), where F (x) is a monic polynomial of degree n.
Then there exist monic polynomials Gi(x) of degree ni such that

∑r
i=1 ni = n,

B = ⊕ri=1R[x]/(Gi(x)) as rings, and

Gi(x) = xni + ai1x
ni−1 + · · ·+ aini ,

where all aij ∈ m.

Proof. Since k is algebraically closed we can factor f(x) := F (x) =∏r
i=1(x − bi)ni ∈ k[x], for some bi ∈ k and ni ∈ N, with

∑r
i=1 ni = n. Be-

sides, B/mB ∼= k[x]/(f(t)) is an Artinian ring with maximal ideal ηi = (x−bi)
for i = 1, ..., r, therefore B/mB ∼= ⊕ri=1k[x]/((x − bi)

ni) (see [1, Theorem
8.7 and proof]). Now, by Hensel’s Lemma there exist monic polynomials
Fi(x) ∈ R[x] such that F [x] =

∏r
n=1 Fi(x) and Fi(x) = (x − bi)ni . By Re-

mark 2.1, SpecmB = {η1, ..., ηr} = V (mB).
Now, let Bi ∈ R such that Bi = bi. Since ηi = (x − bi) in B/mB then

we see by the correspondence between the ideals of B/mB an the ideals of B
containing mB that ηi = (x−Bi) +mB. Now, (F (x))R[x]ηi = (Fi(x))R[x]ηi ,
because (Fj(x)) + ηi = R[x] for all i 6= j, since mod mR[x] this ideal corre-
sponds to ((x − bi)nj ) + (x − bi) = rad(x − bi, x − bj) = k[x] for all i 6= j.
Therefore Fj(x) is a unit in R[x]ηi . Besides, the ring R[x]/(Fi(x)) is local
with maximal ideal (x − Bi) + me, (which we denote again by ηi). This is
because any maximal ideal should contain the expansion of m (the exten-
sion R ↪→ R[x]/(Fi(x)) is finite) and this ring module me, is the local ring
(k[x]/((x− bi)ni), (x− bi)e). So,

Bηi = R[x]ηi/(F (x))R[x]ηi
∼= R[x]ηi/Fi(x)R[x]ηi

∼= (R[x]/(Fi(x)))ηi
∼= R[x]/(Fi(x)).
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Thus, by the previous lemma, B ∼= ⊕ri=1Bηi
∼= ⊕ri=1R[x]/(Fi(x)).

Finally, the isomorphism of rings θi : R[x] → R[t], sending x 7→ t + Bi,
induces an isomorphism of rings θi : R[x]/(Fi(x)) → R[t]/(Fi(t + Bi). But
the reduction of Fi(x) mod mR[x] is exactly ((t+Bi)−Bi)ni = tni , because
translation and reduction mod m commutes. But that means exactly that
Gi(t) = tni+ai,1t

ni−1+· · ·+ai,ni ∈ R[t] with ai,j ∈ m, for any indeces i, j. In
conclusion, we get an isomorphism of rings between B and ⊕ri=1R[x]/(Gi(t))
satisfying the conditions of our corollary. �

Remark 2.4. Let i : R ↪→ S = S1×...×Sn be an extension of rings, where
R is and integral domain. Then there exists a Si such that πi◦i : R ↪→ Si is also
an extension, where πi is the natural projection. Suppose by contradiction
that for any i there exist ai 6= 0 ∈ R such that πi(i(ai)) = 0. Then, if
a =

∏n
i=1 ai 6= 0, for any j,

πj(ai) =

n∏
i=1

πj(i(ai)) = πj(i(aj))
∏
i 6=j

πj(i(ai)) = 0.

Therefore i(a) = (π1(i(a)), ..., πn(i(a)) = 0, contradicting our hypothesis.

Theorem 2.5. Let (R,m, k) be a regular complete local ring with alge-
braically closed residue field k. Then, to prove the DSC for R it is enough to
consider finite extensions R ↪→ S, where S = T/J ,

T = R[y1, ..., yr]/(f1(y1), ..., fr(yr)),

fi(yi) = ynii + ai,1y
ni−1
1 + · · · + ai,ni with ai,j ∈ m and J ⊆ T is an ideal of

height zero.

Proof. Let us fix a finite extension R ↪→ S. By the discussion above,
we know that S = T/J , where T = R[y1, ..., yr]/(f1(y1), ..., fr(yr)) (the coeffi-
cients of the monic polynomials fi(yi) are not necessarily inm), and ht(J) = 0.
It is elementary to see that

T ∼= ⊗ri=1R[yi]/(fi(yi)).

Write Bi = R[yi]/(fi(yi)) then by Corollary 2.3 Bi ∼= ⊕miα=1R[yi]/(fiα(yi))

with fiα(yi) = yniαi + aiα1y
niα−1
i + · · · + aiαniα and aiαj ∈ m. Furthermore,

by the distributive law between tensor products and direct sums (see [30]) we
get

T ∼= ⊗ri=1(⊕miα=1R[yi]/(fiα(yi))) ∼= ⊕w(⊗ri=1R[yi]/(fiαi(yi)))
∼= ⊕wTw,

where w = (α1, ..., αr), 1 ≤ αi ≤ mi and

Tw ∼= ⊗ri=1R[yi]/(fiαi(yi))
∼= R[yi, ..., yr]/(f1α1

(y1), ..., frαr (yr))

where each fiαi(yi) has lower coefficients in m, as desired. Besides, J = ⊕wJw
and then S ∼= ⊕wTw/Jw.
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Finally, by Remark 2.4, there is an α such that R ↪→ Tw/Jw is an exten-
sion. But if there is a retraction ρw : Tw/Jw ↪→ R, then ρ = πw◦ρw : S → R is
also a retraction. Besides ht(Jw) = 0, because dimTw = dimR = dimTw/Jw.
In conclusion, Sw = Tw/Jw has the desired form of our proposition and then
it is enough to prove the DSC in this case. �

Proposition 2.6. Let (R,m, k) be a regular local ring of dimension d,
and

T = R[y1, ..., yr]/(f1(y1), ..., fr(yr)),

fi(yi) = ynii + ai,1y
ni−1
1 + · · ·+ ai,ni , with ai,j ∈ m. Then T is a Gorenstein

local ring with maximal ideal η = m+ (y1, ..., yr).

Proof. First we see that T is a local C-M ring. In fact, let m1 be
any maximal ideal of T . Then m1 ∩ R = m, because dim(R/(m1 ∩ R)) =
dim(T/m1) = 0 and m1∩R ∈ Spec(R). Therefore R/(m1∩R) is a field. Thus,
ynii ∈ m1 and therefore yi ∈ m1. In conclusion, m1 = η. Now, R[y1, ..., yr] is a
C-M ring (see [10, Proposition 18.9]). Thus B = R[y1, ..., yr]η is also C-M. Let
m = (x1, ..., xd), where d = dimR. Then {f1(y1), ..., fr(yr), x1, ..., xd} ⊆ B is a
system of parameters because dimB = ht(η) = dimR[y1, ..., yr] = dimR+ r =
d + r, since R[y1, ...yr] is C-M then by previous comments is equidimen-
sional, and rad(f1, ..., fr, x1, ..., xd) = ηB. Then {f1, ..., fr, x1, ..., xd} is a
regular sequence in B. Thus, B/(f1, ..., fr) ∼= T is C-M, due to the fact that
dimB/(f1, ..., fr) = d, and {x1, ..., xd} ⊆ B/(f1, ..., fr) is a regular sequence.

Finally, let Q = (y1, ..., yr, x1, ..., xd) be the ideal generated by the system
of parameters {y1, ..., yr, x1, ..., xd}. Then T/Q ∼= k[y1, ..., yr]/(y

n1
1 , ..., ynrr ) =

k[w1, ..., wr], where wi = yi. Let us see that

AnnT/Q((w1, ..., wr)) = (

r∏
i=1

wni−1i ).

In fact, if h ∈ AnnT/Q((w1, ..., wr)) and c
∏r
i=1 w

mi
i 6= 0 is a monomial of h

such that there exists mj ∈ N with mj < nj−1, then wjh 6= 0 ∈ T/Q, because
the monomial term wjc

∏r
i=1 w

mi
i has the power mj + 1 < nj on wj , which is

a contradiction, by the reason that h is on the socle. Therefore, mi ≥ ni − 1
for all i and so h ∈ (

∏r
i=1 w

mi
i ). The other contention is clear, and then the

socle has dimension one. In conclusion, (T, η) is a Gorenstein local ring. �

3. The DSC in terms of Annihilators

Now we make preparations for the proof of the following fact: let h :
(R,m)→ (T, η) be a finite homomorphism of local rings, i.e. h(m) ⊆ η where
T is a local R−free ring, with T/mT Gorenstein, and let S = T/J , for some
ideal J ⊆ T . Then h : R → S splits if and only if AnnTJ * mT (by abuse
of notation we denote by h again its composition with the natural projection
π : T → S).
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Proposition 3.1. Let (A, η, k) be a local Gorenstein ring of dimension
zero (i.e. dimk(AnnAη) = 1). Let u ∈ η such that (u) = AnnAη. Then u ∈ I
for any ideal I 6= (0) ⊆ A.

Proof. Clearly, we can assume that I ⊆ η. We know nil(A) = η,
therefore there exists n ∈ N such that ηn = 0. Let x 6= 0 ∈ I. Then
ηn−1x ⊆ ηn = (0). Let r ∈ N be such that ηrx = (0) but ηr−1x 6= (0).
Hence η(ηr−1x) = (0) and so ηr−1x ⊆ AnnAη = (u). Then (u) contains a
nonzero element of the form bx, where b ∈ ηr−1. That means that there exists
c ∈ Ar η with cu = xb, so u = (c−1b)x ∈ I. �

Remark 3.2. If h : R ↪→ T is any homomorphism of rings, we can
consider T ∗ = HomR(T,R) as a T−module with the following action: fix
t ∈ T and define (t · φ)(x) := φ(tx), for φ ∈ HomR(T,R) and x ∈ T .

Remark 3.3. Let (R,m) be a local ring, T a finitely generated R−free
module, and θ : T → T an R−homomorphism. Then θ is an isomorphism of
R−modules if and only if θ : T/mT → T/mT is an isomorphism of K−vector
spaces. In fact, if A ∈Mn×n(R) is the matrix defining θ, then θ is an isomor-
phism if and only if detA is an unit, which means that detA /∈ m. But that
is equivalent to saying that detA 6= 0 ∈ k, where A is the reduction of A mod
m. Finally, since A is the matrix defining θ, the last condition is equivalent
to saying that θ is an isomorphism of k−vector spaces.

Theorem 3.4. Let (R,m) and (T, η) be local rings. Assume that T/mT
is Gorenstein. Let h : R → T be a finite homomorphism of local rings, such
that T is R−free. Then there exists a T−isomorphism β : T → T ∗ such that
for any ideal J ⊆ T , β−1((T/J)∗) = AnnJT .

Proof. We identify (T/J)∗ with {f ∈ T ∗ : f(J) = 0}. We know that
dimT/mT = dimR/m = 0, since T/mT is a finitely generated R/m−module.
So, fix u1 ∈ η such that (u1) = AnnT/mη, since T/mT is Gorenstein. Let

{u2, ..., ud} ⊆ T such that T/mT = (u1, ..., ud) (where T ∼= Rd). Then, by
the Lemma of Nakayama T = (u1, ..., ud), T is generated by u1, ..., ud as an
R−free module. In fact, let {w1, ..., wd} ⊆ T be an R−basis for T . Define
θ : T → T by wi → ui, then the induced θ : T/mT → T/mT is clearly
an isomorphism of k−vector spaces. Since T is R−free, by Remark 3.3, θ
is an isomorphism which means just that {u1, ..., ud} ⊆ T is an R−basis for
T . Let u∗1 ∈ T ∗ be the dual element and define β : T → T ∗ by t → t · u∗1,
where (t · u∗1)(t1) := u∗1(tt1), for all t1 ∈ T . By definition, it is clear that β
is an T−homomorphism. Now, we can make the natural identifications T ∗ =
HomR(Rd, R) ∼= (Homr(R,R))d = Rd. Therefore, T ∗ is an R−free module of
dimension d and β is an R−isomorphism if and only if β : T/mT → T ∗/mT ∗ is
so, due to Remark 3.3 (T ∼= T ∗ as R−free modules). But β is an isomorphism
of k−vector spaces if it is injective. Suppose by contradiction that kerβ 6= (0).
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Then, by Proposition 3.1, u1 ∈ kerβ. That means, β(u1) ∈ mT ∗, so there

exist m1, ...,md ∈ m such that β(u1) = u1u
∗
1 =

∑d
i=1miu

∗
i . But, evaluating

at 1 we get: 1 = u1u
∗
1(1) =

∑d
i=1miu

∗
i (1) ∈ m, a contradiction. In conclusion,

β is a T−isomorphism.
For the last part, let a ∈ AnnTJ . Then, for any j ∈ J , β(a)(j) :=

(au∗1)(j) = u∗1(aj) = u∗1(0) = 0. Therefore, β(a) ∈ (T/J)∗ and thus a =
β−1(β(a)) ∈ β−1((T/J)∗).

Conversely, take φ0 ∈ β−1((T/J)∗). Then there exists a φ ∈ (T/J)∗ such
that φ0 = β−1(φ), i.e. φ = φ0u

∗
1 and φ(J) = 0, which means that u∗1(φ0j) = 0

for all j ∈ J . Now, let’s fix j0 ∈ J . Then, for all t ∈ T , β(φ0j0)(t) =
u∗1(φ0j0t) = u∗1(φ0(j0t)) = 0, because j0t ∈ J . Therefore β(φ0j0) ≡ 0 and
then, by the first part φ0j0 = 0, which means that φ0 ∈ AnnTJ . �

Theorem 3.5. Let h : R→ T/J be a finite homomorphism of local rings
such that (T, η) is a local R−free ring, with T/mT Gorenstein, and J ⊆ T
an ideal. Assume that the structure of R−module of T/J inherited by the
R−structure of T is the same as the one induced by h. Then R ↪→ T/J splits
if and only if AnnTJ * mT .

Proof. Assume that ρ : T/J ↪→ R is a splitting R−homomorphism.
Then ρ ∈ (T/J)∗ and ρ(1) = 1. By the last theorem, there exists ρ0 ∈ AnnTJ
such that ρ0 = β−1(ρ) which means, in particular, that 1 = ρ(1) = ρ0 ·u∗1(1) =
u∗i (ρ0) /∈ m. Then ρ0 /∈ mT , so AnnTJ * mT .

Conversely, take a ∈ AnnTJ rmT . Then, by Proposition 3.1, u1 ∈ (a) ⊆
T/mT , which means that there exists mi ∈ m, with u1 − a =

∑d
i=1miui,

where {u1, ..., ud} ⊆ T is an R−basis for T as in the last Theorem. Then,

au∗i (1) = (1−m1)u1u
∗
1(1)−

d∑
i=2

miuiu
∗
i (1)

= (1−m1)−
d∑
i=2

miu
∗
1(ui) = (1−m1) + 0 = 1−m1 /∈ m.

So ρ = β((1 − mi)
−1a) satisfies that ρ ∈ (T/J)∗ because β−1(ρ) = (1 −

m1)−1a ∈ AnnTJ , and by Theorem 3.4 β−1((T/J)∗) = AnnTJ . Besides,
ρ1 = (1 − mi)

−1au∗1(1) = (1 − m1)−1(1 − m1) = 1, which implies that ρ :
T/J → R is the desired splitting R−homomorphism. �

4. Reduction to the case where J is principal

In the next proposition we will prove that we can reduce to the case where
J is a principal ideal generated by an element in mT .
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Proposition 4.1. Let (R0,m0, k0) be a regular local ring and R0 ↪→ T0
be a finite extension, where

T0 = R0[y1, ..., yr]/(f1(y1), ..., fr(yr)),

and each fi(yi) = ynii + ai1y
ni−1
i + · · ·+ aini , with aij ∈ m, for all indices i,j.

Let S = T0/J , with J = (g1, ..., gs) ⊆ T0 such that J ∩R0 = (0). Let x1, ..., xs
be new variables, and let R be R0[x1, ..., xs],and let m be m0 + (x1, ..., xs), a
maximal ideal of R. Let g be the element x1g1 + · · ·+ xsgs. Write

T = R⊗R0
T0 ∼= R[y1, ..., yr]/(f1(y1), ..., fr(yr)).

Then:

(1) (Rm,mRm, k0) is a regular local ring.
(2) (g)Tm ∩Rm = (0).
(3) Rm ↪→ (T/(g))m ∼= Tm/(g)e is a finite extension, and g ∈ (mRm)Tm.
(4) Rm ↪→ Tm/(g) splits if and only if R0 ↪→ T0/J splits.

Proof. (1) In general, if R is regular then so is the polynomial ring R[T ]
(see [30]). In particular, Rm is a regular local ring and Rm/mRm ∼= R/m ∼=
R0/m0 = k0.

(2) R0 ↪→ R is an R−free extension, then, in particular, it is flat. There-
fore, by tensoring R0 ↪→ T0/J with R, we see that R ↪→ R⊗R0

T0/J ∼= T/Je

is also an extension, and since localization is flat too, we get an extension
Rm ↪→ Tm/J

e. Because of g ∈ Je, we get gTm ∩Rm = 0.
(3) Clearly, by definition g ∈ (mRm)Tm. Now, by the previous paragraph

Rm ↪→ Tm/(g)e is an extension, and it is finite because R0 ↪→ T0 is finite,
in fact free. Then, after tensoring with Rm we get a module finite extension
Rm ↪→ Tm, so Tm/(g)e is also a finitely generated Rm−module.

(4) Assume that ρ0 : T0/J → R0 is an R0−homomorphism such that
ρ0(1) = 1. Then, by tensoring with the flat R0−module Rm, we get an
Rm−homomorphism ρ : Tm/J ↪→ Rm, with ρ(1) = 1. Now, composing ρ with
the natural map Tm/(g)→ Tm/J , we obtain a retraction from Tm/(g) to Rm.

Conversely, it is clear that Tm satisfies the hypothesis of Proposition 2.6.
Therefore, by Theorem 3.5, AnnTm(g) * (mTm. So let’s choose

w =
∑
α

(hα(x)/kα(x))yα,

such that wg = 0, where hα ∈ R and kα ∈ R r m (which is equivalent
to saying that kα(0) /∈ m0). Here yα denotes yα1

1 ...yαrr , α = (α1, ..., αr),
0 ≤ αi < degfi and some hβ /∈ m (that means exactly w /∈ mTm). We
have T = R ⊗R0

T ∼= T0[x1, ..., xs]. Now, multiplying by the product of the
kα(x), we can assume that w =

∑
α pα(x)yα ∈ T , where some pα /∈ m and

0 = wg =
∑
i

∑
α pα(x)yαxigi(y) in T . Now, the coefficient of xi, which is

zero in T , is exactly
∑
α pα(0)yαgi(y), because the terms yαgi(y) are constants

in T = T0[x1, ..., xs]. Therefore, if w0 =
∑
α pα(0)yα ∈ T0, we have w0gi =
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α pα(0)yαgi(y) = 0, and thus w0 ∈ Annt0J . But pβ(0) /∈ m0, because

pβ(x) /∈ m, so w0 /∈ m0T0. In conclusion, AnnT0
J * m0T0, which is equivalent

by Theorem 3.5 to the fact that R0 ↪→ T0/J splits.
�

5. The Socle-Parameters Conjecture

In this and the next section we state two new conjectures (The Socle-
Parameters Conjecture: Strong Form (SPCS) and Weak Form (SPCW)) and
we will prove that the SPCW is equivalent to the DSC and that SPCS implies
SPCW. Besides, these two conjectures are equivalent in the equicharacteristic
case and therefore both are equivalent to the DSC in the equicharacteristic
case, which is a theorem (see previous comments). However, the mixed char-
acteristic case remains open. The new approach shows that the DSC is in
essence a problem concerning algebraic and homological properties of Goren-
stein local rings.

Socle-Parameters Conjecture, Strong Form (SPCS). Let (T, η) be
a Gorenstein local ring of dimension d. Let {x1, ..., xd} ⊆ T be a system
of parameters and write Q = (x1, ..., xd). Let u ∈ T be any lifting of a
socle element in T/Q, i.e. AnnT/Q(η̄) = (ū). Let z ∈ T be a zero divisor.
Then u · z ∈ Q · (z). This is equivalent to saying that `(H0(x, T/(z))) −
`(H1(x, T/(z))) > 0.

Now, we prove the last equivalence:

Proposition 5.1. In the situation of the SPCS the following are equiva-
lent.

(1) u · z ∈ Q · (z).
(2) AnnT (z) * Q.
(3) `(H0(x, T/(z)))− `(H1(x, T/(z))) > 0.

Proof. (1)⇒ (2) Consider the following natural short exact sequence

0 −→ AnnT (z) −→ T −→ (z) −→ 0.

We know that T/AnnT (z) ∼= (z), by the isomorphism sending t to tz. After
tensoring with T/Q we get

(z)/(Q(z)) ∼= T/Q⊗ (z) ∼= T/Q⊗ T/AnnT (z) ∼= T/(AnnT (z) +Q)).

Now, uz ∈ Q·(z) if and only if AnnT (z) * Q. Effectively, uz ∈ Q·(z) is equiv-
alent to uz = 0 ∈ (z)/(Q(z)), and it is equivalent to u = 0 ∈ T/(AnnT (z)+Q),
under the last isomorphism. Therefore, there exists w ∈ AnnT (z) and q ∈ Q
such that u = w+q, and so w = u−q /∈ Q because u /∈ Q. Then AnnT (z) * Q.

(2) ⇒ (1) If AnnT (z) * Q, by Proposition 3.1, u ∈ AnnT (z) ⊆ T/Q.
Then there exists w ∈ AnnT (z) such that u = w, which means that there is a
q ∈ Q such that u = w + q. So,

uz = (w + q)z = wz + qz = qz ∈ Q · (z).
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(2) ⇔ (3) AnnT (z) * Q if and only if Q  AnnT (z) + Q if and only
if `(T/(AnnT (z) + Q)) < `(T/Q). Besides, we have the natural short exact
sequence

0 −→ (z) −→ T −→ T/(z) −→ 0.

Then, after considering the induced long exact sequence for Tor, and noting
that TorT1 (T, T/Q) = 0, because T is a T−free module, and therefore flat (see
previous results), we get the following exact sequence

0 −→ TorT1 (T/(z), T/Q) −→ (z)/Q(z) −→ T/Q −→ T/(Q+ (z)) −→ 0.

Now, since Q is generated by a system of parameters, the T−modules T/(Q+
(z)), T/Q and T/(AnnT (z)) ∼= (z)/Q(z) are Noetherian rings of dimen-
sion zero and therefore Artinian. In particular, they have finite length as
T−modules. Then the submodule TorT1 (T/(z), T/Q)) has finite length too.
By the additivity of `(−), we have

`(TorT1 (T/(z), T/Q))− `(T/(AnnT (z) +Q)) + `(T/Q)− `(T/(Q+ (z)) = 0.

Hence,

`(T/Q)− `(T/(AnnT (z) +Q)) = `(T/(Q+ (z))− `(TorT1 (T/(z), T/Q)).

Then, AnnT (z) * Q if and only if `(T/(Q+ (z))− `(TorT1 (T/(z), T/Q)) > 0.
But T is C-M and then {x1, ..., xn} is a regular sequence. Hence, the Koszul
Complex is a free (and then projective) resolution of T/Q:

· · · −→ K2 −→ K1 −→ K0 −→ T/Q −→ 0.

Hence, after tensoring this resolution with T/(z), and taking homology, we

find thatH1(x, T/(z)) ∼= TorT1 (T/Q, T/(z)) andH0(x, T/(z)) ∼= (T/(z))/Q) ∼=
T/((z) +Q). In conclusion, AnnT (z) * Q is equivalent to the condition

`(H0(x, T/(z))− `(H1(x, T/(z)) > 0.

�

Proposition 5.2. Assume the same hypothesis as in SPCS and, in ad-
dition, that depth(η, T/(z)) ≥ d− 1, then SPCS holds.

Proof. Write a = depth(η, T/(z)). By previous comments (Ch. 1 §1),
we know that if q = sup{r : Hr(x, T/(z)) 6= 0} then a = d− q, therefore q =
d−a ≤ 1. In the case that d = 0, Q = 0 and dimT (η) = 1, thus for any element
u ∈ T holds uz = 0 ∈ Q · (z). Then assume d ≥ 1. Besides, {x1, ..., xn} ⊆ T is
a system of parameters for the T−module T/(z), because dimT = dimT/(z)
and dim((T/(z))/(x1, ...., xd)T/(z)) = 0. So, (T/(z))/(x1, ...., xd)T/(z) is an
Artinian ring. Hence, by previous results, we get

`(H0(x, T/(z))− `(H1(x, T/(z)) = χ(x, T/(z)) = e(Q,T/(z)).
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Now, by previous comments and the fact that d ≥ 1 we see that e(Q,T/(z)) >
0.

�

Socle-Parameters Conjecture, weak Form (SPCW). Let (T, η) be
a Gorenstein local ring of dimension d. Let {x1, ..., xd} be a system of param-
eters (if T is mixed characteristic (charT/η = p > 0), we assume that x1 = p).
Let Q = (x1, ..., xd), and let u ∈ T be any lifting of a socle element in T/Q,
i.e. AnnT/Q(η̄) = (ū). Let z be a zero divisor. Then u · z ∈ Q · (z), which is
equivalent to `(H0(x, T/(z)))− `(H1(x, T/(z))) > 0.

Note that between the two forms of the SPC the only difference is the fact
that in the mixed characteristic case we assume that x1 = p. This condition
has a technical nature and it is necessary in order to apply Cohen’s structure
theorem in mixed characteristic.

Remark 5.3. For proving any of the two versions of the SPC it is enough
to assume that (T, η) is complete.

Proof. Let τ : T → T̂ be the natural homomorphism to the com-

pletion. Then τ is an faithfully flat extension and IT̂ ∩ T = I for any
ideal I of T (see [30, p. 63] ). Besides, another elementary consequence

of faithfully-flatness is that for any ideals I, J of T , (J : I)T̂ = (JT̂ :

IT̂ ). Now, assume by contradiction that there exists a system of param-
eters {x1, ..., xd} (for the SPCW assume x1 = p), a zero divisor z ∈ T
and u ∈ T a lifting of a socle element for T/Q such that uz /∈ Q(z). Let

us write τ(y) = y′. Then {x′1, ..., x′d} ⊆ T̂ is a system of parameters in

T̂ , because η̂ = ηT̂ = rad((x1, ..., xd)T̂ ) ⊆ rad(x′1, ..., x
′
d) ⊆ η̂. Besides,

(Q · (z) : z)T̂ = (QT̂ · (z′) : z′); T̂ /QT̂ ∼= (T̂/Q) = T/Q, due to the fact
that ηn = (0) for some n > 0; therefore (u′) = AnnT̂ /QT̂ (η̂) and so u′ is a

socle element. Note that p = char(T̂ /QT̂ ) = char(T/Q). Furthermore, T̂ is
also a Gorenstein ring (see [30, Theorem 18.3] ).

Finally, ((QT̂ : z′) + (u′))/(QT̂ : z) ∼= ((Q : z) + u))/(Q : z)) ⊗ T̂ 6= 0,

because (Q : z) + u)/(Q : z) 6= 0, since uz /∈ Q(z). Then u′z′ /∈ QT̂ · (z′)
which contradicts SPC in the complete case. �

6. Equivalence to the DSC

Theorem 6.1. The Socle-parameters Conjecture (weak Form) is equiva-
lent to the Direct Summand Conjecture.

Proof. SPCW ⇒ DSC. By previous comments we may assume that
R ↪→ S is a finite extension and R is a unramified regular local mixed char-
acteristic ring (char(R/m) = p > 0) with algebraically closed residue field
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k. Besides, by Theorem 2.5 we can assume that S = T/(J) such that
T = R[y1, ..., yr]/(f1(y1), ..., fr(yr)); fi(yi) = ynii +ai1y

ni−1
i + · · ·+aini , where

aik ∈ m, for all indexes i,k, and ht(J) = 0. Now, T is a Gorenstein local ring
by Proposition 2.6. Moreover, by Proposition 4.1 R ↪→ S splits if and only
if R1 := R[x1, ..., xd]m1

↪→ S1 = T1/(z) splits, where m1 = m + (x1, ..., xd),
T1 = R1[y1, ..., yr]/(f1(y1), ..., fr(yr)) and z ∈ T1.

Besides, by previous results R[x1, ..., xd] is a regular ring. In particular
R1 is regular. Furthermore, R1 is unramified, otherwise there exist elements
ai, bi ∈ m1 and s ∈ R1 rm1 such that sp =

∑c
i=1 aibi, and then evaluating

in (0, ..., 0) we get p = s(0)−1
∑c
i=1 ai(0)Bi(0) where, ai(0), bi(0) ∈ m and

s(0) ∈ Rrm, so p ∈ m2, which is a contradiction.
Hence, p /∈ m2 and then p 6= 0 ∈ m/m2 is a part of a basis of m/m2 as

k-vector space, which is equivalent by the Lemma of Nakayama to the fact
that p is a part of a minimal set of generators of m, say, {w1 = p, ..., wn} ⊆
m. Now, {w1 = p, ..., wn} ⊆ T1 is a system of parameters in T1, because
dim(T1/m1T1) = dim(r1/m1) = 0 and dimT1 = dimR1, since R1 ↪→ S1 is a
finite extension.

On the other hand, z is a zero divisor en T1 because dimT1/(z) = dimS1 =
dimR1 = dimT1 and therefore z is contained in a minimal prime of T1, since
T is C-M.

Since T1 is Gorenstein, choose u ∈ T1 such that (u) = AnnT1/m1T1
(η).

By SPCW, uz ∈ m1T1 · (z), so there exists a ∈ m1T1 such that uz = az,
hence (u − a)z = 0. But u − a /∈ m1T1, because u /∈ m1T1. Therefore
AnnT1(z) * m1T1, and then, by Theorem 3.5, R1 ↪→ S1 splits.

DSC ⇒ SPCW . Let (T, η) be a Gorenstein local ring and {x1, ..., xd} ⊆
T a system of parameters (x1 = p in the mixed characteristic case). By
Remark 5.3 we can assume that T is local. Let D be a coefficient ring for T
(which always exits for any complete local ring, see previous results). Then,
due to the Cohen’s Structure Theorem (see [8, Lemma 16]), the ring generated
as D-algebra by the parameters R = D[x1, ..., xd] is a complete regular local
ring with maximal ideal Q = (x1, ..., xd) such that the extension R ↪→ T is
finite. Since R is regular, then, by Serre’s theorem (see [30] Theorem 19.2)
pdR(T ) is finite. Hence, for the Auslander-Buchsbaum formula and the fact
that depth(Q,T ) = depth(η, T ) (see [7, Exercise 1.2.26]), we know that

pdR(T ) = depth(Q,R)− depth(Q,T ) =

dimR− depth(η, T ) = d− dimT = d− d = 0.

So T is a free R-module. Furthermore, z is contained in an associated prime
of T because it is a zero divisor. Since T is C-M, then, by previous comments,
any associated prime is, in fact, a minimal prime. Thus, z is contained in a
minimal prime P ∈ SpecT . Moreover, since T is C-M, T is equidimensional,
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that means, in particular, that dimT/(z) ≥ dimT/P = dimT . In conclusion,

dimR/((z) ∩R) = dimT/(z) = dimT = dimR,

so (z) ∩ R = (0), because R is a domain (R is regular!). Now, to see that
uz ∈ Q · (z), it is enough to see that AnnT (z) * Q. In fact, if AnnT (z) * Q

then AnnT (z) 6= 0 in T/Q. Therefore, by Proposition 3.1, u ∈ AnnT (z), there
exists w ∈ AnnT (z) such that u − w ∈ Q. Thus, uz = (u − w)z ∈ Q · (z),
because wz = 0. By Theorem 3.5, R ↪→ T/(z) splits if and only if AnnT (z) *
mT = Q, where m = (x1, ..., xd) ⊆ R. Hence, the DSC for R ↪→ T/(z) implies
AnnT (z) * QT , and then uz ∈ QT · (z) �

7. The SPCS on Low Multiplicities

The way to attack the SPCS would be by induction on the multiplicity of
T , e(T ). First, by Remark 5.3 we can assume that T is complete. If e(T ) = 1
then since T is a complete C-M ring, it is equicharacteristic and therefore
unmixed. Hence by the Criterion of multiplicity one (see [29]) T is a regular
local ring, in particular, an integral domain, which implies z = 0, holding
directly the SPCS. Suppose that e(T ) = 2. Since T is C-M, it satisfied the
condition S2 of Serre, i.e. for any P ∈ SpecT , depth(P, T ) ≥ min(2,dimTP ),
due to the fact that depth(P, T ) = dim(TP ). Hence, by a Theorem of Ikeda
(see [26, Corollary 1.3.]) T is an hypersurface of the form B/(f), where B
is a complete regular local ring. Now, we will prove a more general result,
namely, that the SPCS holds for residue class ring of local Gorenstein rings
which are UFD and C-M, which implies, in particular, the case of multiplicity
two because regular local rings are UFD and C-M (see previous comments).

Proposition 7.1. The SPCS holds for Gorenstein rings of the form T =
B/(f), where B is a local C-M ring which is a UFD and f 6= 0 ∈ B.

Proof. Let z 6= 0 ∈ T be a zero divisor and {y1, ..., yd} ⊆ T a system
of parameters. we will see that `(H0(y, T/(z))) − `(H1(y, T/(z))) > 0. The
minimal prime ideals of T are just the principal ideals generated by the prime
factors of f =

∏
f cii , i.e. Pi = (fi), since B is a UFD. Besides, it is enough to

prove SPCS for z = fi, because each zero divisor is a multiple of one of these,
i.e. z = afi for some a ∈ B, and thus if ufi ∈ Q · (fi), where Q = (y1, ..., yd)
and (u) = AnnT/Q(η) then uz = uafi = uafi ∈ Q · (afi) = Q · (z). Let us fix

some fj , then T/(fj) = B/(fj) is a C-M ring, because is a quotient of a C-M
ring by a ideal generated by a regular element (B is an integral domain) (see
[10, Proposition 18.13]). Since T is equidimensional, dimT = dimT/(fj) and

dim(T/(fj)/(y1, ..., yd) = dimB/(fj , y1, ..., yd) ≤

dimB/(f, y1, ..., yd) = dimT/(y1, ..., yd) = 0,
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because (fj , y1, ..., yd) ⊆ (f, y1, ..., yd) ⊆ B. Hence, (y) = {y1, ..., yd} ⊆ T/(fj)
is a system of parameters and so it is a regular sequence. ThusH1(y, T/(fj)) =
0 (see [30, Theorem 16.5]). In conclusion,

`(H0((y), T/(fj)))− `(H1((y), T/(fj))) = `(H0((y), T/(fj)))

= `((T/(fj)/(y1, ..., yd))) ≥ 1 > 0,

because T/(fj)/(y1, ..., yd) 6= (0). This prove the SPCS for T .
�

Typical examples of local C-M rings which are UFD are localizations of
polynomial rings in prime ideals, or rings of formal power series over DVD
or fields. More generally regular local rings fulfill these conditions (see [10,
Corollary 18.7, Theorem 19.19]).

8. A New Proof of DSC in the Positive Characteristic Case

Now, we present a new proof of the DSC in the positive characteristic
case by proving some particular case of SPCW. The new key ingredient is the
following Lemma and we refer to [34, Proposition 5.2.6] for a proof.

Lemma 8.1. Let R be a Noetherian ring, M an R−module and let x1, ..., xn
be a sequence of elements in R such that M/(x1, ..., xn)M has finite length.
Let i ∈ {1, ..., n}. Then, there exists a constant c such that the length of the
Koszul homology module `(Hi(x

q
1, ..., x

q
n;M)) ≤ cqn−i, for all q ∈ N>0.

Proposition 8.2. Let (R,m, k) be an equicharacteristic regular local ring,
with charR = p > 0, and R ↪→ S a finite extension. Then R ↪→ S splits.

Proof. After tensoring with the completion of R, which is faithfully
flat, we can assume, by previous comments, that R is complete. By Cohen’s
Structure Theorem (see [19, Theorem, p. 26]), R ∼= k[[x1, ..., xn]], where
chark = p > 0. Now, we can assume that k is perfect (i.e. kp = k), be-
cause each extension of the tower R ↪→ k ⊗k R ↪→ k[[x1, ..., xn]] is faithfully
flat, where k denotes an algebraic closure of k. Effectively, R ↪→ k ⊗k R is
R−free and therefore faithfully flat. Besides, we can identify k ⊗k R with
∪i∈IEi[[x1, ..., xn]], where Ei runs over all field extensions k ⊆ Ei ⊆ k, such
that [E : k] < +∞. From this, we see that the completion of the local ring
k⊗kR is exactly k[[x1, ..., xn]] and so k⊗kR ↪→ k[[x1, ..., xn]] is faithfully flat.

Again, by Theorem 2.5 and Proposition 2.6 we can assume that S ∼= T/J ,
where T is a Gorenstein local ring and ht J = 0. Moreover, by Proposition 4.1
and after tensoring with the completion of R1 = R[w1, ..., wr](m+(w1,...,wr)),

which is isomorphic to k[[X1, ..., xm]] (for some m ≥ n), we see that R̂1 ⊗R1

(R1 ⊗R T ) has exactly the same form as in Proposition 2.6. But, now we can
assume that J is a principal ideal generated by a zero divisor. In conclusion, we
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can assume that R = k[[x1, ..., xm]], where k is a perfect field and S = T/(z),
where T is a Gorenstein local ring and z is a zero divisor.

Now, we set Pq = (xq1, ..., x
q
n) ⊆ T , where q is a power of p. Note that

Rq = k[[xq1, ..., x
q
n]] ↪→ R is finite and thus by the proof of Theorem 6.1Rq ↪→ S

splits if and only if

δ = δRq (x
q
1, ..., x

q
n;T/(z)) :=

`Rq (H0(xq1, ..., x
q
n;T/(z))− `Rq (H1(xq1, ..., x

q
n;T/(z)) > 0.

Besides, it is elementary to see that

δ = δR(xq1, ..., x
q
n;T/(z)),

because the degree of the residue field extension of Rq ↪→ R is one and
then

`R(HR
i (xq1, ..., x

q
n;T/(z))) = `Rq (H

R
i (xq1, ..., x

q
n;T/(z))) =

`Rq (H
Rq

i (xq1, ..., x
q
n;T/(z))).

The last equality holds because the last two Kozsul homology groups are
isomorph as Rq-modules.

We will prove that limq→+∞δR(xq1, ..., x
q
n;T/(z)) = +∞. In fact, since

{xq1, ..., xqn} ⊆ T is a system of parameters for the R−module T/(z), we know
that

χ(xq1, ...x
q
n;T/(z)) = qnχ(x1, ..., xn;T/(z))

(see Corollary 5.2.4 [34]) and by previous comments,

χ(x1, ..., xn;T/(z)) = e((x1, ..., xn), T/(z)) > 0,

because dimR > 0 (if dimR = 0 then R is a field and the DSC is trivial).
Besides, by the previous corollary we know that there is a constant c such that
`R(Hi(x

q
1, ..., x

q
n;T/(z))) < cqn−i for each i = 1, ..., n and each q. Combining

this we get the following estimate

δR(xq1, ..., x
q
n;T/(z)) = qne+

n∑
i=2

(−1)i+1`R(HR
i (xq1, ..., x

q
n;T/(z)) ≥

qne−
n∑
i=2

cqn−i,

where e = e(xq1, ..., x
q
n;T/(z)) > 0. Let’s write f(q) := qne −

∑n
i=2 cq

n−i.
Then, the polynomial f(q) → +∞, when q → +∞, because it has positive
leading coefficient. Therefore, δR(xq1, ..., x

q
n;T/(z)) = +∞. Let’s fix b =

ph > 0. Then by the proof of Theorem 6.1 Rb ↪→ T/(z) splits. Denote
by ρ1 : T/(z) → Rb a splitting Rb−homomorphism. Finally, the Frobenius
homomorphism Fb : R → Rb sending x → xb is an isomorphism of rings.
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Hence, we can define ρ : T/(z) → R, by ρ(x) := F−1b (ρ1(xb)). Clearly,
ρ(1) = 1 and if x ∈ T/(z) and r ∈ R then

ρ(rx) = F−1b (ρ1((rx)b)) = F−1b (ρ1(rbxb)) =

F−1b (rbρ1(xb)) = F−1b (rb)F−1b (ρ1(xb)) = rρ(x).

So ρ is R−linear. In view of that R ↪→ T/(z) splits. �



CHAPTER 5

The DSC for Some Quadratic Extensions

1. The DSC for Some Radical Quadratic Extensions

In this section we will prove the DSC for finite extensions generated by
two elements satisfying radical quadratic equations in the setting of a UFD
R, with char(K(R)) 6= 2 and when these satisfied quadratic equations and
assuming that their coefficients satisfy a couple of arithmetical conditions.

In this section, let R be an integral domain and let L = K(R) be its
field of fractions. Let S be a module finite extension of R such that S is
generated by two elements s1 and s2 that satisfy monic polynomial f1 and
f2, respectively. Without loss of generality we can suppose that the degrees
of these polynomials are greater that one, since in the case that one of the
polynomials has degree one, it would imply that the corresponding root si
belongs to R and therefore S is just generated by one element as R−module.

But, if R is a UFD, then it is easy to see that S is isomorphic to a quotient
of a ring of the form C = R[x]/(f(x)), for a monic polynomial f , by an ideal J
of height zero. Thus, J would be contained in some of the minimal primes of
C, which are exactly principal ideals generated by the classes of the (monic)
prime factors of f(x) in the UFD R[x]. Hence, we can assume that J is, in
fact, one of these primes, due to the fact that it is enough to find a retraction
from a nonzero quotient of S to R. In conclusion, we can assume that S itself
has the same form of C. But, it is elementary to see that C is a R−free
module and therefore the extension splits.

Set

T = R[T1, T2]/I,

where I = (f1(T1), f2(T2)), for monic polynomials in R[T1, T2], and let ϕ :=
T → S be the R-homomorphism sending T1 to s1 and T2 to s2. Let’s denote
with small letters the classes in T of the capital letters. It is easy to see that T
is a free R-module because T ∼= R[T1]/(f1)⊗RR[T2]/(f2). In fact, an R-basis

for T consists of monomials of the form td11 t
d2
2 , where 0 ≤ di < deg fi.

If Q is the kernel of ϕ then S ∼= T/Q. Besides the Krull dimensions of the
rings S and T coincide with the dimension of R because both extensions are
finite over R and in particular integral (see Going up and its incomparability
property, [10, Proposition 4.15 and Corollary 4.14]). Hence, the height of Q

79
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must be zero, that means that Q is contained in some of the minimal primes
of T .

In the next lemma we shall characterize the case, where T is an integral
domain. This is important in the sense that if T is an integral domain then
necessarily Q = (0) and therefore S = T is a direct summand of R, since T is
a free R-module. In the following lemma i and j are indexes between 1 and
2, with i 6= j.

Lemma 1.1. Let R, T , f1, f2 be as above and let Ei := L[Ti]/(fi) and
Fj := Ei[Tj ]/(fj). Then T is an integral domain if and only if there is a i
such that both Ei and Fj are fields. That is, if and only if fi is irreducible in
L[Ti] and fj are irreducible in Ei[Tj ].

Proof. First, note that L ⊗R T ∼= L[T1, T2]/I ∼= Ei[Tj ]/(fj) = Fj and
the natural homomorphism µ := T ↪→ L ⊗R T is an injection because T is a
torsion free R-module, since R is an integral domain and T is a free module.
Therefore T is a subring of Fj , and if Fj is a field (in fact if it is an integral
domain), then T is an integral domain. That gives the “only if” part of our
lemma.

Conversely, let’s assume that T is an integral domain and for the sake of
contradiction that either Ei or Fj is not a field. In the first case, there are
monic polynomials of positive degree g1 and g2 in L[Ti] such that fi = g1g2
and deg(gs) < deg(fi). Now, let α ∈ Rr{0} be a common denominator of the
coefficients of g1 and g2. Then the equality α2fi = (αg1)(αg2) in R[Ti] implies

that αgi are zerodivisors in T . Besides, αgi = αt
deg(gi)
i + ... 6= 0 because gi,

written in the former R-basis of T , has some of the coefficients different from
zero. Therefore T is not an integral domain, which is a contradiction. Then
we can assume that Ei is a field.

Again, suppose for the sake of contradiction that fj is reducible over
Ei[Tj ]. That is, fj = h1h2, where h1, h2 ∈ Ei[Tj ] are monic polynomials such
that 0 < deg(hn) < deg(fj). Then, the difference fj−h1h2 is the zero polyno-
mial in Ei[Tj ]. Now, choose H1, H2 ∈ L[Ti, Tj ] such that ψ(Hs) = hs, where
s ∈ {1, 2} and ψ := L[Ti, Tj ]→ Ei[Tj ] is the natural homomorphism induced
by the projection L[Ti] → Ei. In fact, we can choose each Hi (considered
as a polynomial in (L[Ti])[Tj ]) such that each of its coefficients in L[Ti] is a
polynomial in Ti with degree smaller than deg(fi)). Therefore, there exists
a polynomial H3 ∈ L[T1, T2] such that fj − H1H2 = H3fi. Finally, choose
some nonzero element c ∈ R such that cHr ∈ R[T1, T2], for r = 1, 2, 3. Thus
cH1cH2 = c2fj − c(cH3)fi ∈ I ⊆ R[T1, T2] and by construction the classes of
cH1 and cH2 in T are nonzero, because some of the coefficients of the mono-
mial R-base of T is not zero. In conclusion, T is not an integral domain, a
contradiction. �
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Corollary 1.2. Let R be an u UFD with char(L) 6= 2. Assume that
fi = T 2

i − ai are irreducible polynomials in L[Ti] for i = 1, 2. If T =
R[T1, T2]/(f1, f2) is not an integral domain then there exist c, d, u ∈ R r {0}
such that a1 = d2u, a2 = c2u and c, d are coprime.

Proof. By the symmetry and Lemma 1.1, there exists some such that
f2 is reducible in E1[T2]. But in our case this is equivalent to saying that f2

has a root in E1, say e = e1 + e2T1 ∈ E1, where e1, e2 ∈ L and T1
2

= a1. So

a2 = e2 = (e21 + e2a1) + 2e1e2T1,

and then a2 = e21 + e22a1 and 2e1e2 = 0. But charL 6= 2, then e1e2 = 0. If
e2 = 0, then a2 = e21 and f2 = (T2+e1)(T2−e1) a contradiction. Thus, e1 = 0
and a2 = e22a1. Write e2 = e/d, where c, d 6= 0 are coprimes. So d2a2 = e2a1,
but d2 does not divide c2, therefore d2 divides a1 and then there is a u ∈ R
such that a1 = d2u. Replacing in the forming equation we get d2a2 = c2d2u,
and dividing by d2 6= 0, we get a2 = c2u, which proves our corollary. �

Lemma 1.3. Let R be a UFD; B := R[X,Y ];u, c, d ∈ R r {0}; f1 =
X2 − d2u; f2 = Y 2 − c2u irreducible polynomials. Set I = (f1, f2) ⊆ B.
Assume that {c, d} is a regular sequence. Then the minimal prime ideals of I
are Pr = (f1, f2, dY + (−1)rcX,XY + (−1)rcdu), for r = 0, 1.

Proof. First, note that f = T 2−u has no roots in R, because f1 has no
roots in R. Therefore, f is irreducible in R[T ], and then (f) is a prime ideal,
since R is a UFD. Define ψr : B → R[T ]/(f) as the unique R-homomorphism
sending X → dt and Y → (−1)r+1ct. We prove that ker(ψr) = Pr. In fact,

ψr(f1) = d2t2 − d2u = d2u− d2u = 0;

ψr(f2) = c2t2 − c2u = 0;

ψr(dY + (−1)rcX) = d(−1)r+1ct+ (−1)rcdt = 0;

ψr(XY + (−1)rcdu) = (−1)r+1cdt2 + (−1)rcdu = 0.

Conversely, it is a well known fact that over the ring of polynomials with
coefficients in a commutative ring there exists division algorithm if the divisor
is a monic polynomial. This justify the following procedure: let h(X,Y ) be
a polynomial in ker(ψr), then there exists Q(X,Y ) ∈ B = (R[Y ])[X] and
q0(Y ), q1(Y ) ∈ R[Y ] such that h(X,Y ) = (X2 − d2u)Q(X,Y ) + q1(Y )X +
q0(Y ). Besides, there exist q3(Y ) ∈ R[Y ] and q4, q5 ∈ R such that q0(Y ) =
(Y 2− c2u)q3(Y ) + (q4Y + q5). Now, it is easy to see that there exists polyno-
mials q6(Y ), q7(Y ) ∈ R[Y ] and constant b1, b2,∈ R such that

q1(Y )X = (XY + (−1)rcdu)q6(Y ) + q7(y) + b1X + b2.

Moreover, we can divide q7(Y ) by f2 a getting a representation q7(Y ) =
q8(Y )f2 + q9(Y ). Replacing all of these equations in the first one, we see that
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there exists polynomialsQ1(X,Y ) ∈ B;Q2(Y ), Q3(Y ) ∈ R[Y ] andQ5, Q6, Q7 ∈
R such that h(X,Y ) = Q1(X,Y )f1 + Q2(Y )(XY + (−1)rcdu) + Q3(Y )f2 +
Q4Y + Q5X + Q6. Now, 0 = ψr(h) = Q4(−1)r+1ct + Q5dt + Q6, and since
R[T ]/(f) is a R-free module with basis {1, t}, we get (−1)r+1Q4c+Q5d = 0,
and Q6 = 0. But {c, d} is a regular sequence and then Q5 is a multiple
of c. Thus, there exists w ∈ R such that Q5 = wc. Replacing in the
equation (−1)rQ4c = Q5d and dividing by c, we get (−1)rQ4 = wd and
so Q4 = w(−1)rd. In conclusion, Q4Y +Q5X = w((−1)rdY + cX), and then
h ∈ Pr.

Finally, Pr is a prime ideal because B/Pr is isomorphic to the integral
domain R[T ]/(f). On the other hand, in order to prove that P0 and P1

are the minimal primes of I let’s consider any other minimal prime ideal
Q ∈ Spec(B/I). Computing in B/I we get that c2f1− d2f2 = (cx− dy)(cx+
dy) ∈ Q, so cx − dy ∈ Q or cx + dy ∈ Q. In the first case we deduce
that −x(cx − dy) = dxy − cx2 = dxy − cd2u = d(xy − cdu) ∈ Q. Be-
sides, y(cx − dy) = cxy − dy2 = cxy − dc2u = c(xy − dcu). Assume by
the sake of contradiction that (xy − cdu) /∈ Q, then c, d ∈ Q and thus
x2 = (f1 + d2u), y2 = f2 + c2u ∈ Q, or equivalently, x, y ∈ Q. Now, if
(c, d) = R, then Q = B/I a contradiction. Therefore we can assume that
(c, d)  R. Since x /∈ P1/I because every monomial in any generator of P1,
which is a multiple of X, is X2, or XY , or cX, but X /∈ (X2, XY, cX)  B,
because 1 /∈ (X,Y, c), so the monomial X cannot appear as an algebraic com-
bination of the generators of P1. In conclusion, P1/I  (x, y, c, d) ⊆ Q and so
Q is not minimal, a contradiction. Then, (xy − cdu) ∈ Q and so P1/I ⊆ Q,
which is equivalent to P1/I = Q due to the minimality of Q.

In the second case, cx+dy ∈ Q and we verify, as in the previous case, but
multiplying the element cx+ dy by x and y, respectively, that yx+ cdu ∈ Q,
so P0 = Q, finishing the proof. �

Corollary 1.4. Let R ↪→ S be a finite extension of commutative rings
such that R is an UFD, char(L) 6= 2 and S is generated by two elements
s1, s2 ∈ S satisfying monic radical quadratic polynomials f1 = T 2

1 − a1 and
f2 = T 2

2 − a2, respectively. Then R ↪→ S splits.

Proof. By the Going Up, there exists a prime ideal Q ⊆ S, such that Q∩
R = 0. Therefore we can replace S by S/Q without changing the hypothesis
and clearly it is enough to find a retraction from S/Q. In conclusion, we can
assume that S is a domain.

As seen before S is isomorphic asR-algebra to T/J , where T = R[T1, T2]/I;
I = (f1, f2) and ht(J) = 0. Now, f1 ∈ R[Ti] is irreducible for i ∈ {1, 2}, oth-
erwise, fi would have a root in R and then S would be generated by just one
element as R-module, and by the comment at the beginning of this section
the extension splits on that case. If T is an integral domain then J = 0 and so
S = T ∼= R4 is an R-free module and in this case it is clear that there exists
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a retraction.
On the other hand, if T is not a domain then, by Corollary 1.2 there

exist c, d, u ∈ R r {0} such that a1 = d2u and a2 = c2u and c, d are co-
primes, which implies that {c, d} is a regular sequence. Besides, by Lemma
1.3, min(T ) = {P0/I, P1/I} and then J ⊆ Pr/I for some r ∈ {1, 2}. Hence if
α : T/J → T/(Pr/I) is the natural map, ψ′r : T/(Pr/I) → R[T ]/(T 2 − u) is
the R-isomorphism induced by ψr as in the proof of

Lemma 1.3 and π1 : R[T ]/(T 2 − u) ∼= R2 → R is the projection in the
first component, then a retraction is given by ρ := π1 ◦ ψ′r ◦ α. This proves
our corollary. �

Corollary 1.5. Let R ↪→ S be a finite extension of commutative rings
such that R is an UFD, char(L) 6= 2, 2 is a unit in R and S is generated by two
elements s1, s2 ∈ S satisfying monic quadratic polynomials f1 = T 2

1 +b1T1+c1
and f2 = T 2

2 + bb2T2 + c2, respectively. Then R ↪→ S splits.

Proof. We can reduce the proof to the radical quadratic case as in the
previous Corollary, because it is easy to verify, by means of a elementary
“completing the squares” argument that the following R−homomorphism is
an isomorphism. We define

T ′ = R[U, V ]/(U2 + b− a2/4, V 2 + c− d2/4),

and

R[X,Y ]/(X2 − aX + b, Y 2 − cY + d),

and ψ : T ′ → T sending U to X − a/2 and V to Y − c/2.
In conclusion, S is isomorphism to a quotient of T ′ and so we can choose

as generators of S as R−module elements satisfying monic radical quadratic
equations, i.e., s1 = U and s2 = V . Therefore by the previous Corollary the
extension splits. �

2. The DSC for Some Nonradical Quadratic Extensions

Now, we prove a similar result for non-radical quadratic extensions by
assuming two arithmetical conditions, one of them involving the discriminant
of one of the quadratic polynomials.

Theorem 2.1. Let R be an UFD and R ↪→ S a finite extension such
that S is minimally generated by s1, s2 ∈ S. Assume that f(s1) = 0 = g(s2),
where f(x) = x2 − ax + b and g(y) = y2 − cy + d for some a, b, c, d ∈ R. If
gcd(2, c) = 1 and a2 − 4b is square free then R ↪→ S splits.

In order to prove this Theorem we need the following lemma:

Lemma 2.2. Let R be a UFD such that 2 6= 0, and T = R[x, y]/(f(x), g(y)),
where f(x) = x2−ax+b and g(y) = y2−cy+d for some a, b, c, d ∈ R. Suppose
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that gcd(2, c) = 1 and a2 − 4b 6= 0 is square free. If T is not an integral do-
main, then there exists e ∈ R such that (c±ae)/2 ∈ R and the minimal primes
of T are P1 = (g(y), y− ex− (c− ae)/2) and P2 = (g(y), y− ex− (c+ ae)/2).

Proof. Since f is irreducible, because u = a2 − 4b is square free and
assuming that T is not a domain, then, by Lemma 1.1, g is reducible on
L[y], where L = K(R)[x]/(f(x)). We can assume that L ∼= K(u1/2), for
u = a2−4b and K = K(R). Therefore g(y) has a root h = α+βu1/2 ∈ L, but
one checks directly that the conjugate h = α − βu1/2 is also a root of g, i.e.
g = (y−h)(y−h). By comparing coefficients we get α2−β2u = d and c = 2α,
so 4d = c2 − 4β2u. Let’s write β = q/r, for q, r ∈ R such that gcd(q, r) = 1.
From the last equation we get 4r2d = r2c2 − 4q2u, then 4(r2d+ q2u) = r2c2.
It implies that 4 | r2c2, but gcd(2, c) = 1, therefore 4 | r2 and so 2 | r. Write
r = 2t, for some t ∈ Rr {0}. Hence, after canceling 4 in the last equation we
get 4t2d+ q2u = t2c2 or, equivalently, t2(c2− 4d) = q2u. From this, it follows
that t2 | q2u, which implies t2 | u, because mcd(t, q) = 1. But, u is square
free, therefore, t is a unit and then we can assume that q/t ∈ R. Defining
e = q/t, we get

(2.1) c2 − 4d = e2(a2 − 4b).

We will prove that 2 | (c ± ae). In fact, suppose that 2 =
∏
pγii ; and sup-

pose c + ae =
∏
pαii ; and that c − ae =

∏
pβii are the corresponding fac-

torizations, where α, β, γ ≥ 0 (we can write in every expression the same
primes because we allow the (unique) exponents to be zero). We shall see
that γi ≤ min(αi, βi), for all i. From (2.1) it holds that

((c− ea)/2)((c+ ea)/2) = d− e2b ∈ R,

this implies that 2γi ≤ αi + βi, since (c − ea)(c + ea)/22 belongs to R. By
the sake of contradiction suppose that there is j such that γj > min(αj , βj).
Without loss of generality, we may assume αj = min(αj , βj). Hence, γj ≤ βj ,
otherwise 2γj > αj + βj , which is a contradiction. Therefore, p

γj
j | (c − ae),

then p
γj
j | (c − ae) + 2ae = c + ae, which means γi ≤ αi. In conclusion,

γi ≤ min(αi, βi) for all i, so 2 | (c ± ae). Let g1 = y − ex − (c − ae)/2 and
g2 = y − ex− (c+ ae)/2. Using ((c− ea)/2)((c+ ea)/2) = d− e2b we see by
direct computation that

(2.2) g1g2 = e2f + g.

Now, (2.2) implies P1 = (g1, f) and P2 = (g2, f). Besides,

R[x, y]/(f(x), g1) ∼= R[x]/(f(x)) ∼= R[x, y]/(f(x), g2),

because in both cases we can eliminate the variable y using g1 and g2, respec-
tively (for example the first isomorphism send y to ex+(c−ae)/2). Hence, P1
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and P2 are prime ideals of T , because R[x]/(f(x)) is an integral domain. Fi-
nally, they are minimal primes because by (2.2) any prime ideal P ∈ Spec(T )
should contain g1 or g2 and thus P = P1 or P = P2. �

Now, we prove Theorem 2.1.

Proof. By previous results we know that S ∼= T/J , where

T = R[x, y]/(f(x), g(y))

and htJ = 0. Besides, f(x) ∈ R[x] is irreducible, because otherwise there
would exist a, b ∈ R with f(x) = (x − a)(x − b), so s1 = a or s2 = b, which
implies S = R[s2], contradicting the fact that s1, s2 generate S minimally as
an R−module.

On the other hand, by the previous Lemma J ⊆ Pj , for some j = 1, 2.
Finally, we get the desired retraction ρ : S → R as the composition of the
following natural chain of R−homomorphisms

S = T/J → T/Pj
ϕ−→ R[x]/(f(x))→ R⊕Rx π1−→ R,

where ϕ is the R−homomorphism defined by ϕ(x) = x and ϕ(y) = gj−y. �
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