ON (ABSOLUTE) IRREDUCIBILITY CRITERIA FOR SOME POLYNOMIAL
STRUCTURES VIA ARITHMETICAL PROPERTIES OF PERSISTENCE
DIAGRAMS OF NEWTON POLYTOPES

DANNY A. J. GOMEZ-RAMIREZ, EDISSON GALLEGO-GONZALEZ,
JAIBERTH PORRAS-BARRERA, DIEGO A. LOPEZ-CARDONA, AND SONIA A. AGUDELO

ABSTRACT. We establish basic results for an initially surprising connection
between seminal notions of persistent homology, in the context of topolog-
ical data analysis, and (absolutely) irreducibility criteria for polynomials in
several variables over a field. Specifically, we prove (absolutely) irreducibil-
ity criteria for several sorts of polynomial in several variables in terms of
arithmetical properties of the zero-dimensional persistence indexes of the
corresponding persistence’s skeletons of the polynomials based on a work
of G. Gao. Additionally, we present a partially self-contained introduction to
the classic and new notions of persistent homology and irreducibility criteria
needed in the paper together with enlightening examples.

INTRODUCTION

At the beginning of the third decade of the twenty-first century we, as hu-
manity, produce very large collections of data sets with a titanic complexity
and at a unprecedented rate. The excessive exposition and daily dependency
on digital devices for the fulfillment of some of our most basic activities fa-
cilitate enormously that a lot of data if collected, stored and subsequently
analysed, for example, in the form of cookies, etc. These clouds of millions of
terabytes of information not only about us, but also regarding the industrial,
economic, political, logistic, sociological, geological and cosmological dimen-
sions of our universe contain and encode highly valuable secrets and relevant
key features about the structure of the behaviour of us and of our cosmos.

Thus, it turns out that these seminal secrets of nature encoded within the
data sets are gradually more challenging to be revealed due to the growth of
the intrinsic complexity and size of them. Therefore, more general, finer, and
deeper mathematical models and theories are required to analyse soundly

2020 Mathematics Subject Classification. 13B25, 13P05, 55N31.
Key words and phrases. Persistence’s diagrams, Newton polytopes, absolute irreducibility,
polynomial rings, topological data analysis.



2 D. A. J. GOMEZ-RAMIREZ, E. GALLEGO, J. PORRAS, D. LOPEZ, AND S. AGUDELO

such colossal clouds of information. In particular, structurally new model-
ing methodologies are required which should go far beyond the classic linear
(polynomial), analytic and numerical methods [10], [12], [8], [9].

In this context, a relatively new mathematical modeling collection of tech-
niques have emerged over time possessing a topological nature in contrast
with the analytic and numerical one of the former approaches. These gath-
ering of techniques are known as Topological Data Analysis (TDA) [1]. In a
broader sense, TDA encompasses a group of methodologies of data analysis
such as persistence homology, mode estimation, nonlinear dimension reduc-
tion, and clustering, among others [18]. Nonetheless, in a more concrete per-
spective, it refers directly to persistence homology [3], which is essentially an
algebraic-homological method for measuring topological attributes of shapes
such as connectedness and geometrical forms emerging from the peculiar lo-
cal and global distribution of distances among (large) data sets, being config-
ured and understood, for instance, as points in a n—dimensional space [14].

As a whole, TDA has a wide spectrum of applications in several academic
and applied disciplines such as oncology [2], chemical engineering [17], bio-
medicine [16], aviation [11], spatial networks [4], among many others [1].

One of the main purposes of this work is to highlight and to describe pre-
cisely a new formal surprising connection of some of the main concepts and
features of persistence homology with a sort of mathematical issues situated
at the intersection of commutative algebra and number theory. More precisely,
we establish new criteria for irreducibility (primality) of certain families of
polynomials in several variables over an arbitrary coefficient’s field in terms
of some persistence properties of the corresponding cloud of integral points
within the n—dimensional real space emerging from the multi-exponent of
their non-zero monomials.

1. PRELIMINARY NOTIONS AND METHODOLOGY

In this section, we introduce the central objects and results of study to es-
tablish our main results. Roughly speaking, they are divided into two classes:
the first one including classic and new mathematical structures belonging
to persistent homology and the second one regarding notions and theorems
within the realm of (combinatorial) commutative algebra and number theory.

1.1. Persistent Homology. In this chapter we introduce the concept of per-
sistence homology, which plays a fundamental rol in the applications of TDA.
To do this, we must first define what a simplicial complex is.

Let X = {z;}ien_,, be a finite cloud of points within the n—dimensional
real space R™. A simplicial complex K < P(X) over X is a non-empty subset
of parts of X that satisfies:

e r;eKfori=0,1,2,...,m.
e IfoceKand! c o, then!l e K.
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The elements of K are called simplices or faces of K. If 0 = {x;,, x4, ..., %4, }
belongs to K, we say that o is a t—dimensional face of K or that ¢ is a
t—simplex of K. The 0—simplices are called vertices of K, and the 1—simplices
are called edges. We say that K is an m—dimensional simplicial complex if it
contains at least one m—simplex.

Example 1.1. Let X = {v; = (1,3),v3 = (2,4),v3 = (7,6),v4 = (2, —4),v5 =
(4,7)}. In the following definition of a simplicial complex K of X, the vertices
appear in the first row, the edges in the second row, the 2—simplices in the
third row, and the 3—simplex in the fourth row.

{vi}, {v2}, {vs}, {va}, {vs},

lh = {vi,va}, 1o = {v1,vs}, 13 = {v1,v4}, 14 = {va,v4}, 5 = {va,v5},
o1 = {v1,v2,v3},09 = {v1,v2,04},03 = {v1,v4,v3},04 = {V2,v4,v3},
n= {’Ul,vz,v:s,m}

Since the simplicial complex K has dimension 3, we can associate it with a
topological space in R?, which we will refer to as the geometric realization of
K. It can be visualized as follows:

Here, each vertex v; is identified with a point (in this example, in R?), usually

labeled with the same name v; as the vertex. Each edge I, = {v,., v} is iden-

tified with the line segment that goes from v, to vs. For example, the edge I,

is identified with the line segment that goes from v; to vs. Each 2—simplex

o is identified with the filled triangle whose vertices are the vertices in o. In

general, any n—simplex ¢ = {vg,v1,...,v,} can be identified with the set of
n ,

R n
points X = .go)‘i'”i where each \; > 0 and E]O)\i =1.

Definition 1.2. Given a finite set of points X = {xzg,z1,...,2,} in a metric
space (M, d) and a positive real number r, we define the Vietoris-Rips complex
of X (or simply Rips of X) with parameter r as the simplicial complex denoted
by K,.(X) that satisfies:
e The vertices of K,.(X) are the points of X.
o 0 ={yo,¥1,...,y:} € K.(X) if and only if d(y;,y;) < r forall 4,5 =
0,1,2,...,t
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In the subsequent examples, X will be a finite set of points in R?. How-
ever, it may occur that dim (K, (X)) > d for some values of r. Therefore, the
geometric realization of K,.(X) may not be a topological subspace of R? (in
example (1.1), the point cloud X is a subset of R?, but K & R?).

Note that if » < r/, then K,.(X) < K,~(X). This inclusion induces a homo-
morphism between the p—th simplicial homologies H, (K, (X)) — H,(K, (X)),
for all p; see, for instance [3].

Definition 1.3. A collection of simplicial subcomplexes {K,},c; of K (for
some J < R) such that K, ¢ K,., when r < ¢/, is called a filtration of K if
UK, =K.

Example 1.4. Below, we present a filtration of the simplicial complex K given
in example (1.1). For simplicity, we only present the graphical representation
of each subcomplex. K, consists of all the 0-simplices (vertices) of K; K;
includes all the vertices and edges of K; K is composed of all simplices of di-
mension less than or equal to 2 of K. Finally, K3 = K also contains the interior
of the tetrahedron with vertices v1, v2, v3 and v4. Thus, Kg  K; < Ky < Ks.

Ko K

Given a filtration of simplicial complexes
KocKyc---cK,_1 K,

and an integer p > 0, we can induce a sequence of linear maps in the homolo-
gies as follows:

I £ 2 ot
HP(K()) - Hp(Kl) I — Hp(anl) - Hp(Kn)-
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For i < j, let us denote f7 = fio --- o fi. Then, we define H}/ =
Zp(Ki)
By(K;) 0 Z,(K)

the p—boundaries of K;.

Let 0 € H,(K;) be an equivalence class of a p—simplex. We say that o is
born in K; if o ¢ H/ . Now, suppose that the simplex o is born in K;. We
say that ¢ dies in K;, if this simplex merges with an older class when going
from K;_, to K, that is, if f7~'(c) ¢ H)~"~' but f}9(0) € Hi~"7. The
following diagram schematically illustrates the notions of birth and death of

an equivalence class:
P R\
)\

, where Z,(K;) represents the p—cycles of K; and B,(K;)

AN

i-1 i j-1 j
H, H, H, H)

Let X = {x;} be a finite set of points in R” and {K,, (X) = K,,} a filtration
with Vietoris-Rips complexes of the convex hull of X, ordered such that K., ¢
K, if r; < r;. Consider o € Hy(K,,), a p—simplex that is born in K,, and
dies in KK, ; we then associate to o the ordered pair (r;,7;), which indicates
its birth and death.

Barcode. The barcode of X in dimension p is the set of horizontal lines that
begin at r; and end at r;, with one line for each p—simplex that is born at
some r; and dies at some ;.

Persistence Diagram. The persistence diagram is another way of representing
the information gathered from the births and deaths of the p—simplices that
appear and disappear as the filtration K,, progresses. The persistence dia-
gram in dimension p associated with X is the set of ordered pairs

D,, = {(r;,7;)| 3o such that o is born at r; and dies at r;}.

Additionally, for each ordered pair (a,b) € D,, we can define the function

Tr—a ifa<x<“7+b,
fap(@) =<Sb—z if L <z <,
0 otherwise.

This family of functions f(, ;) () allows us to introduce the following con-
cept.
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Persistence Landscape. For each k € N, we define the function f;(z) as the
k—th largest value of the set {f(,) (z)}, where (a,b) varies over all elements
of D,. The function f : N x R — R given by f(k,z) = fi(z) is called the
persistence landscape in dimension p associated with X.

Example 1.5. Consider the following point cloud X in R3:
X= {(07 0, O)a (17 0, 0)7 (07 L, O)a (Oa 0, 1)a (0, 1, 1)}
For this point set X, we have the barcode, persistence diagram, and persis-
tence landscape shown below. As is customary, the barcodes are presented in
a single graph (see Table 1), assigning a different color to each dimension (in

this example, black bars for dimension zero and red bars for dimension one).
Similarly, the persistence diagram is presented with the same color scheme.

Scatterplot 3d Barcode
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TABLE 1

Definition 1.6. Let X = {a;};en_,, be a finite collection of m points within the
n—dimensional real space. Let P)(X) be the zero persistence barcode of X.
Then, the first (Vietoris-Rips) persistence index of X of dimension zero pind; (X)
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is the biggest horizontal finite length of Py(X), with (Vietoris-Rips) multiplicity
mind; (X) equal to the number of times that there are lines in P, (X) of exactly
this length.! If mind; (X)) = m — 1, then the next indices and multiplicities
of persistence are defined as zero. Otherwise, the second persistence index of
X of dimension zero, pinds(X), is the second biggest horizontal finite length
appearing in P, (X), with its similar corresponding multiplicity mindy(X). If
mindy (X) + mindz(X) = m — 1, then the next indices and multiplicities of
persistence are defined as zero, and so on.

Note that the persistence’s indices and multiplicities are defined until the
(m — 1)th step. Moreover, from the former definition one can immediately
deduce the following formula:

Z mind;(X) =m — 1.
i=1

Example 1.7. Let’s consider the polynomial q(z1,z2) = 1+ 1 + x2 + 2129 +
r3z3. We can pick the exponents of its terms to obtain the collection X =
{(0,0), (1,0), (0,1),(1,1),(3,3)} of points in R2. In the following figure it is

drawn the cloud of points X and its persistence barcode in dimension 0:

20

20

x2
1

0.0
=
=3
<

(A) Geometric representation of the fi- (B) Representation of the persistence’s in-
nite cloud of points emerging from the dexes of the corresponding finite cloud of
exponents of the polynomial ¢(z1, z2). points via its barcode.

FIGURE 1

n the sequel, we will omit, for simplicity, the Vietoris-Rips name for the indexes as well as
for the multiplicities.
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Here, we can see that its first persistent index pind; (X) is approximately
2.8, mind; (X) = 1; pindz(X) = 1, and mindz(X) = 3, finally

Zmindi(X) =5—-1=4.

1.2. Absolute Irreducibility of Polynomials, Newton Polytopes and Per-
sistence’s Skeletons. One question of tantamount importance in polynomial
and commutative algebra naturally derived from classic arithmetic is primal-
ity criteria for polynomials. In other words, to find sufficient and necessary
conditions for a polynomial (or similar entities such as formal power series
or rational functions) to be primes. Now, it is worth to note that from ele-
mentary abstract algebra we know that in the context of polynomial rings in
several variables over a unique factorization domain being prime is equivalent
to being irreducible, since UFD-s remains so by adding finitely many variables
[5].

This specific field of research possesses on its own a huge amount of results
and techniques which at first sight seem to be kind of overwhelming and
surprising (see, for example, [15]).

Here, our center of attention will be focus on irreducibility criteria based
on properties of the so called Newton polytope of a polynomial. One of the
cornerstones for our results will be the work of Shuhong Gao as presented in
[6].

For the sake of completeness and for a more easier understanding from
the reader’s perspective, now we will present explicitly some definitions and
results needed in the next section.

Let R := k[x1,- - ,x,] denote the ring of polynomials in several variables
over a arbitrary field k. For each polynomial f € R we define the Newton
polytope of f, denoted by Py, as the convex hull in R™ of the finite collection
of integral n—dimensional points formed by the exponents of the non-zero
monomials appearing in f. More generally, if N = {¢1,--- ,¢;} € R™ a finite
collection of points, then the convex hull of N is defined as

conv(N) = conv(cy, -+ ,¢s) i= {Z zici 2y = 0, Z z; = 1} ,
=1 =1
and is called a polytope. Additionally, a point a; is called a vertex of conv(N)
if it not lie strictly inside the line segment of any other two points of the poly-
tope. Clearly, any non-empty polytope has a non-empty collection of vertices.

A polytope is integer if all the coordinates of each of its vertices are integer

numbers. The greatest common divisor of the points ¢y, - ,cs, denoted as
ged(ey, -+, cs), is simply the greatest common divisor of all the entries of
each ¢;, together, for j = 1,--- ,s.

For example, the integer Newton polytope of f = 2% + 23 € k[z1, 72] is
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Pf = {(G‘?b) = w1(270) + w2(0’3) € RQ LWy, w2 = 07w1 + we = 1}7

and the vertices of Py are (2,0) and (0, 3).
If A, B < R®, then the Minkowsky sum of A and B is defined as usual

A+B={a+beR":ae Aand be B}.

An integral polytope N is called integrally indecomposable (or simply inde-
composable in our presentation) if it cannot be written as A + B, where A and
B are integral polytopes with at least two points each one.

On the other hand, a polynomial f € R is called absolutely irreducible if it
is irreducible over any algebraic extension of the coefficient field k, in other
words, if f is irreducible in R;, = L[z, - ,x,], where k < L is any algebraic
field extension of the original coefficients’ field.

The following proposition is the classic key element connecting absolute
irreducibility of polynomials and indecomposability of their corresponding
Newton polypotes and was firstly discovered by A. M. Ostrowski in [13]. We
state explicitly the main result here in similar terms of the presentation given
in [6].

Proposition 1.8. (Irreducibility Criterion) Let f € R\{0} be a polynomial non-
divisible by any of the variables x;. If the Newton polytope P is (integrally)
indecomposable, then f is absolutely irreducible.

The main ingredient of the proof of this criterion is the fact thatif f,g,h € R
are polynomials such that h = fg, then P, = Py + P, [6, Lemma 2.1].

For the sake of completeness in our presentation, we state explicitly the
following results, which play a key role for the proofs given in the next sec-
tion, they correspond to Theorem 4.2 and corollaries 4.3, 4.5 a 4.7 of [6],
respectively.

Theorem 1.9. Suppose that the polytope conv(vy,va, -+ ,v,) S R™ lies in a
hyperplane H. Let v € R™ not belonging to H. Then the composed polytope
conv(vy, -+ , Uy, v) is integrally indecomposable if and only if

ged(v — vy, 0 —vy) = 1.

Proposition 1.10. Let a and b be two (distinct) integral points in R", then
the line segment ab := conv(a,b) is integrally indecomposable if and only if
gced(a —b) = 1.

Proposition 1.11. Let a,b,c € R™ be three (distinct) integral non-collinear
points. Then, the triangle conv(a,b, ¢) is integrally indecomposable if and only
if ged(a —bya —¢) = 1.
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Proposition 1.12. Let a,b,c,d € R™ be four (distinct) integral noncoplanar
points. The tetrahedron conv(a,b, ¢, d) is integrally indecomposable if and only
if ged(a —b,a—c,a —d) = 1.

The next notion is new in our context and explore the external and es-
sential points of the Newton polytope of a polynomial regarding the kind of
irreducibility criteria developed in [6].

Definition 1.13. Let f € R\{0}. The persistence’s skeleton of f, denoted as
Psk(f), is the collection of vertices of the Newton polytope of f.

In other words, the persistence’s skeleton of a non-zero polynomial f cor-
responds exactly to the multi-indices of it that structures the whole boundary
and interior of Py, omitting any multi-index corresponding to a point in the
interior of Py.

2. MAIN RESULTS

In this section, we will state and prove our main results describing (neces-
sary and) mostly sufficient absolutely irreducibility criteria for several collec-
tions of polynomials via arithmetical properties of their corresponding persis-
tence’s skeletons.

In the structure of our formal presentation we obtain a lot of inspiration by
the general heuristics and cognitive nature of the multidisciplinary research
program of Cognitive-Computational Metamathematics (CCMM) or Artificial
Mathematical Intelligence (AMI) presented in [7]. Explicitly, we will derive
the results gradually in a very intuitive, constructive and natural fashion, fo-
cusing on both the rigor and completeness of the proofs, and in a sequential
edification of the more general facts. So, we could allow ourselves that simi-
lar lines of argumentation can occur at different levels of generality in order
to stress that one can capture quite interesting and enlightening ideas even
in the most concrete cases, and, on the other hand, one can loss a little bit of
solid intuition among more general settings.

The first proposition establishes a complete characterization of irreducibil-
ity for suitable classes of binomials in two variables over an algebraically
closed (coefficient) field. In our whole presentation n denotes a natural num-
ber > 1.

Proposition 2.1. Let E be an algebraically closed field and Rg = E[z,y]. Let
f € Rg be a binomial not divisible by any variable. Then, f is irreducible in Rg
if and only if there exists one of the nongero integral coordinates of some of the
vertices of Py, let us say c, such that ged(c, (pindy (Psk(f)))?) = 1.

Proof. Set d = (pindi(Psk(f)))?, and Psk(f) = {(a1,b1), (az,b2)} < Z2, in
other words, f = hiz®y® + hox®y®2, with hy, he # 0. From the fact that
f is not divisible by any of the variables we deduce that a; = 0 or a; = 0,
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and, b; = 0 or by = 0. Now, from the definition of persistent barcode we see
that d = (a; — a2)? + (b1 — ba)?, which, by the former fact, has the form of
d = a3 + b7, for some i, j € {1,2}.

(<) Suppose that ged(c,d) = 1, where ¢ is some (nonzero) of the co-
ordinates of a vertex of Py, i.e., ¢ € {a1,b1,a2,bs2}. Then, let us show that
ged(ay — ag, by — by) = 1. Effectively, assume for the sake of contradiction that
there exists a prime number p dividing a; — a2 and b; — bs. Then, by the
former general facts we know that up to sign c is equal either to a; — as
or to by — by, since ¢ # 0. So, p divides c¢. Clearly, p|d. In conclusion,
plged(d, ¢), which is absurd, since they are coprime numbers by hypothesis.
Thus, ged(a; — az, by — by) = 1, then, by Proposition 1.10 and Proposition 1.8
f is (absolutely) irreducible in Rg.

(=) Suppose that f is irreducible and assume by contradiction that there
exists a nonzero coordinate ¢ of one of the vertex such that d and ¢ are both
divisible by a prime number ¢. Again, due to ¢ # 0 and the general hypothesis,
it holds that either ¢ = +(ay — a2) = +a; or ¢ = £(by — b2) = +b,, for some
suitable i, 5 € {1,2}. From this fact, we conclude that ¢ divides any nonzero
exponent of each of the variables appearing in each of the two monomials of
/. So, each of the monomials of f can be written as the ¢-th power of another
monomial. Due to the fact that F is an algebraically closed field, there exists
t1,to € E such that t7 = hy and ¢ = —hy. Then,

f= (tlxal/qybl/q)q _ (thaz/qybz/q)q _

(b ybr/a — g2/ ayb2/a) (¢ @ /aybr/aya=t o

is a reducible polynomial in Rg, which contradicts the hypothesis. This
completes the proof. O

The next proposition generalizes only one direction the former criterion.
The main challenge for polynomials in three (or more) variables is that the
arithmetic condition given before in terms of the greatest common divisor
of the first persistence index of dimension zero and one of the coordinates
of some of the vertices does not directly implies that the coordinates of the
difference of the entries of the vertices are coprime. This is due to the fact that
there could be a collection of (difference of) integral coordinates such that the
sum of their squares (which is equal to the first persistence index of dimension
zero) is not coprime with each of them, but all of them are coprime.

Proposition 2.2. Let k be an arbitrary field and R = k[xy,--- ,x,], withn > 3.
Let f € R be a binomial (polynomial) not divisible by any variable. If there exists
one of the integral coordinates of some of the two vertices of Py, let us say c, such
that
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ged(c, (pindy (Psk(f)))?) =1,
then f is absolutely irreducible over R.

Proof. Set d = (pind; (Psk(f)))?, and

Psk(f)={s=(s1,"+,8n), 7 =(r1, -+ ,m0)} S Z".

From the fact that f is not divisible by any of the variables we deduce that
for each j € {1,--- ,n}, either s; = 0 or r; = 0. Now, from the definition of
persistent barcode we see that d = (s; — r1)? + -+ + (s, — r,)?, which, by
the former fact, has the form of d = w? + --- + w2, where for each j, either
w; = +8; Or w; = *7;.

Let us consider two cases. The first one is ¢ = 0. In this case d = 1, which
implies necessarily that there exists exactly one index i € {1,--- ,n} such that
s; = r; = 1. This entails to ged(s — r) = ged(sy — 71, , 8, — ) = 1. Thus,
by Propositions 1.10 and 1.8, f is absolutely irreducible.

For the second case ¢ # 0, we deduce from the former facts that ¢ =
+(s; — rj), for some index j. So, if ged(s — r) # 1, then a common prime
divisor p would necessarily divide ¢ and d, which is a contradiction since
ged(c,d) = 1. Thus, ged(s — r) = 1, which implies by Propositions 1.10 and
1.8 that f is absolutely irreducible. O

Remark 2.3. In the former proposition the arithmetical hypothesis is strong
enough to guarantee that any polynomial satisfying it must be a binomial.
Effectively, let f € R be a polynomial not divisible by any variable such that
P; consists of two vertices and fulfilling the former hypothesis. Then, it is
an elementary fact to verify that from the hypothesis one deduces that the
greatest common divisor the differences of the entries of the two vertices of
Py is one. So, if f is formed by more than two different monomials, then
at least one of them would correspond to a point strictly in the middle of
the two vertices of P;. Otherwise, P; would not be a line, but at least a
triangle having strictly more than two vertices. Thus, this implies that there
exists a third point © € R™ with integral entries strictly in between the two
vertices. Now, this fact implies that the greatest common divisor of the entries
of the difference of the vertices is greater than one. In fact, after translation
one can assume that one of the vertices is the origin. Additionally, one can
prove by an elementary argument that any point (different from the origin)
of a line passing through the origin in R™ and with integer entries (if there
exists such a point) should be an integer multiple of one of the points of the
finite set consisting of elements in Z" within the line with smallest (non-zero)
Euclidean norm, which, in fact, corresponds with the set of integral points
of the line whose entries are coprime. So, from the former general property
and from the fact that « should have Euclidean norm strictly smaller that
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the non-zero vertex of Py, we conclude that the entries of the this non-zero
vertex (or, more generally, of the difference of the originally two vertices)
are not coprime, which is absurd. So, our original polynomial f should be a
binomial. This justifies the addition of the word polynomial in parentheses in
hypothesis of the last proposition.

Our next result involves a criterion for the case of trinomials involving a
simple arithmetic condition for two of the persistence indexes of the corre-
sponding persistence skeleton.

Proposition 2.4. Let k be an arbitrary field and R = k[x1,--- ,x,]. Let f € R
be a polynomial not divisible by any variable. Suppose that the persistence’s
skeleton of f is a triangle such that the first two persistence indexes exists, they
are both different from zero and

ged ((pindi (Psk(f)))?, (pinda(Psk(f)))?) = 1.
Then f is absolutely irreducible over R.

Proof Set d = (pindi(Psk(f))) and e = (pind2(Psk(f))). First, note that by
basic properties of persistence homology and by the definition of persistence
barcode d and e are precisely the lengths of two of the sides of the triangle
Psk(f). So, since the vertices of Psk(f) are integral points, the numbers
d? and e? are positive integers. Now, since these distances d and e fulfill
the condition that ged(d?, e?), by hypothesis, they should involve exactly one
vertex of Psk(f), let us say v;. Denote by v, and v3 the other two vertices
of Psk(f). We claim that ged(vy — ve,v1 — v3) = 1. Effectively, if not choose
a prime number p such that p divides all the entries of v; — vy and v; — vs.
Then, by definition of d? and e, p would divide both of them, because ||v; —
v9]|2 = d? and |jv; — v3||? = €2. This contradicts the fact that ged(d?, e?) =
1. In conclusion, ged(vq — va,v1,vs) = 1. Finally, since by the former fact
and by Proposition 1.11 Py = conv(Psk(f)) = conv(vy,v2 — v3) is integrally
indecomposable, this implies by Proposition 1.8 and by hypothesis that f is
absolutely irreducible over R. O

In the next proposition we give simple, buy slightly more technical condi-
tions for guaranteeing the absolutely irreducibility in the case that the corre-
sponding persistence’s skeletons consists of four vertices. As the reader may
appreciate, as the number of vertices slightly increase the geometrical com-
plexity of the possible configurations of persistence indices increase consider-
ably fast.

Proposition 2.5. Let k be an arbitrary field and R = k[xy,--- ,x,]. Let f € R
be a polynomial not divisible by any variable. Suppose that the persistence’s
skeleton of f is a tetrahedron with noncoplanar vertices Psk(f) = {v1,va, v3,v4}.
Assume that there exist indices h,i,j € {1,2,3} and a vertex of Psk(f), let us
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say vy, such that pindy,(Psk(f)), pind;(Psk(f) and pind;(Psk(f)) represent
nonzero numbers and correspond to distances among the vertex v, and the other
three vertices of Psk(f). Additionally, suppose that the following condition holds

ged ((pindn (Psk(f)))?, (pind; (Psk(f)))?, (pind; (Psk(f)))?) = 1.

Then f is absolutely irreducible over R.

Proof. Set d = pindy(Psk(f)),e = pind;(Psk(f)) and g = pind;(Psk(f)).
After re-enumeration we can assume that that v, = v;. Moreover, note
that in the hypothesis we are not necessarily counting multiplicity among
the persistence indexes. In other words, some of the indexes h,: and j
could be equal. The crucial fact here is that the correspond to distances
among the fixed vertex v; and all the other vertices of Psk(f). We claim
that ged(vy — v9,v1 — v3.v1 — vg) = 1. If not, then let p be a prime dividing all
the entries of v; —v9, v1 —v3 and v; —v4. So, p would divide the squares of their
corresponding Euclidean norms, i.e., p|d? = ||v; — v2||?, ple? = ||Jv1 — v3]|? and
plg? = ||v1 — v4]|?. This contradicts directly the hypothesis. Thus, by Proposi-
tion 1.12 Psk(f) = conv(vy, ve, v3,v4) is integrally indecomposable, and then
the hypothesis and Proposition 1.8 implies that f is absolutely irreducible.

U

In our next statement, we establish suitable geometric conditions for per-
sistence skeletons with arbitrarily many vertices that implies again absolutely
irreducibility.

Proposition 2.6. Let k be an arbitrary field and R = k[x1,--- ,x,]. Let f € R
be a polynomial not divisible by any variable. Suppose that the persistence’s

skeleton of f is a pyramid with vertices Psk(f) = {v,v1,--- , v}, where the
vertices vy, -+ , vy, lie in a hyperplane H and v ¢ H. Suppose that there exist
indices i1, -+ ,ip € {1,--- ,m}, with i, < m, such that

pindi, (Psk(f)),- - ,pind;, (Psk(f))

correspond exactly to distances between v and some vertices vj, , - - - ,v;,, With
J1,- s dp € {1,--- ,m}.
Thus, if

ged ((pind;, (Psk(f)))%,- -+, (pind;, (Psk(f)))?) = 1,
then f is absolutely irreducible over R.

Proof. Following similar conventions as in the former proofs, we claim that
our hypothesis implies that gcd(v — v1,...,v — v,,) = 1. Otherwise, let p be a
prime number that divides all the coordinates of v — vy, -+ ,v — v,,. Then, in
particular, p would divide all the square of the numbers
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pind;, (Psk(f)))? = lv — v, %, -+, (pind;, (Psk(f)))* = [Jv — v, |1%,
which contradicts the main condition regarding the coprimality of these

numbers. Then, by Propositions 1.8 and Theorem 1.9 f is absolutely irre-
ducible. O

Complementing the methodological remarks made at the beginning of this
section, it is worth noting that although one could derive formally some of
the former propositions from Proposition 2.6, we believe that it is more con-
venient for the sake of a deep understanding of the reader about the core
intuitions behind these results, to present them more organically and in co-
herence with the way in which they were discovered; emphasizing expressly
the highlights at each particular stage of generally, e.g. with 1, 2, 3, 4, and
more vertices. We hope that this kind of presentation will offer not only the
formal demonstrations, but also valuable information about the ‘out of the
blue’ dimension of the mathematical creation, which is, in general, hidden
within the formalism and purely logic presentation of most of the research
articles published in (pure) mathematics.

3. GENERAL CONCLUSIONS AND FURTHER POTENTIAL FUTURE WORK

We believe that all the results presented in this article represent just the
top of the iceberg consisting of very foundational and enlightening formal
connections between notions coming from and inspired by persistence homol-
ogy and topological data analysis, on the one hand; and from combinatorial
commutative algebra and number theory, on the other hand.

A natural question to further study would be the connection of arithmetical-
geometric properties of persistence indexes of higher dimension for guaran-
teeing and characterizing (absolute) irreducibility of arbitrary polynomial in
several variables over a field or over suitable unique factorization domains,
for example.
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