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Abstract

The low-lying energy levels of two on-axis shallow donor impurities releasing

two electrons in two vertically stacked Ga1−xAlxAs nanorings are calculated.

The analysis has been focused on the effects of the hydrostatic pressure (P),

aluminum concentration (Alx) and temperature (T) in the quantum energy lev-

els ordering. It was obtained that in the ranges 0 − 15 kbar of hydrostatic

pressure, 4−400 K of temperature, and 0−0.4 of aluminum concentration, the

variable that generates the greatest energy variation is the aluminum concen-

tration, and that the aluminum concentration and hydrostatic pressure tends

to favor the molecular stability while the temperature has a contrary effect.

The two-particle Wigner crystallization is affected by the (P,Alx,T) factors and

the transition points may vary from state to state. The ground state energy

parameters of the artificial molecule such as the equilibrium length and dis-

sociation energy can be substantially modified through the inter-ring distance

and the rings radii, respectively. The effects of the (P,Alx,T) factors affects the

molecular ground state energy in the order of 3− 5%.
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nanostructure, Wigner crystallization

1. Introduction

Recent significant advancements in semiconductor nanostructure engineering

have highly improved the growth of single vertically stacked pairs of quantum

dots (QDs) with modifiable vertical dot-dot spacing [1, 2]. In lattice-mismatched

heteroepitaxy, vertical self-alignment of QDs is obtained as a consequence of a5

strain field into the spacer layer by the first QD layer favoring the growth of

a second QD above the first one [2, 3]. Morphological and structural analy-

ses of vertical coupled quantum dots (VCQDs) are being currently carried out

thorough multibeam bright field imagining, and surface morphology character-

ization, with atomic force microscopy [4]. With the purpose of studying their10

optical features; spectroscopy (micro-photoluminescence and photoluminescence

excitation), and time-resolved techniques [2] are being used. Very recently, El-

borg and co-workers [5] have sucessfully grown vertically aligned GaAs quantum

ring/dot structures by a multiple droplet epitaxy technique. They show that the

geometry of the rings and dots, and the GaAlAs spacer layer, can be controlled15

in separated growth steps. In parallel, Heyn [6] fabricated self-aligned vertically

stacked GaAs quantum dot molecules by filling of self-assembled nanoholes in a

GaAlAs matrix. In this work was shown the excitonic features exhibited by the

quantum dot molecules by studying their optical emission. These experimental

findings have revealed the great potential offered by VCQDs for fabricating com-20

plex quantum molecules oriented to the development of quantum information

technologies [3, 7]. One huge value concerning these quantum-based compu-

tational devices could be related to alternative ways of constructing more effi-

cient computational paradigms and tools aiming to solve complex problems in a

human-style such as the denominated artificial (mathematical) agents [8, 9, 10].25

Consequently, in order to delve deeper into the understanding of the physi-

cal phenomenon underlying, several theoretical works on few-particle systems

confined in VCQDs have been addressed [11, 12, 13, 14, 15, 16]. Manjarres [11]
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calculated some low-lying states of a double-donor complex confined in vertically

coupled quantum lenses, threaded by a uniform magnetic field, as a function of30

the interdot distance and the magnetic field strength. The results show that the

complex evolves from a ordered system (in which the charge carriers behave as a

rigid rotator) to a disordered one (similar to a gas-like system) by decreasing the

lenses size. In [12] the authors calculated the quantum states and recombination

probabilities for excitons, and negative and positively charged trions in VCQDs35

under the presence of an electric field. It was shown that the exciton and tri-

ons energies as a function of the electric field, exhibit crossing and anticrossing

points which can be interpretated as a proof of the fact that the exciton or trion

can be tuned into resonance states by the electric field applied. Stavrou [13]

employed the strain dependent ~k · ~p theory to analyze the relationship between40

the circular light polarization and the size asymmetry of self-assembled VCQDs

with ellipsoidal shape. The results show that the circular light polarization takes

large values if enlongated QDs, small dot-dot spacings and large volumes ratios

are considered. Computational calculations of magnetization and differential

magnetic susceptibility for single-electron semiconductor vertical coupled quan-45

tum rings (VCQRs) have been addressed by Li [14], showing that the magnetic

field threading through the nanostructure yields to non-periodical jumps of the

magnetization which are dependent on the radii of the rings and the ring-ring

spacing. Additional studies related to the effect of the quantum dot morphol-

ogy on the binding energy of a neutral donor confined in two VCQDs has been50

perfomed [15, 16]. The studies concluded that the neutral donor binding energy

it is strongly dependent on the quantum dot size and shape.

Undoubtedly, these experimental and theoretical reports evince that semi-

conductor VCQDs are a promising scenario to develop innovating quantum

physics. Since the two-electron VCQRs in hard confinement have been previ-55

ously addressed in [17], performing one additional step, would motivate to study

three-dimensional structures compound by VCQRs confining other few-particle

systems such as the artificial H− and Li+ ions, or artificial He atoms, in order

to explore the structure-to-structure interaction and geometrical effects on the
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energy spectrum of such artificial nanosystems. Since there are not too many60

reports in the literature analyzing double-donor systems confined in VCQRs,

also called two-hydrogenic artificial complexes, in the present work, we have

undertaken a theoretical study to calculate the eigenenergies and eigenstates of

two electrons spatially separated and forced to move in two Ga1−xAlxAs VC-

QRs and bounded to two on axis-fixed shallow donors. The full system is under65

hydrostatic pressure and external magnetic field probes. We have analyzed the

effects on the quantum levels due to the magnetic field, the aluminum con-

centration, the temperature and the hydrostatic pressure, being this last effect

interesting since the low-temperature photoluminescence spectra measurements

in semiconductor QDs under hydrostatic pressure have shown that this external70

probe modifies significantly the carrier energy structure [18].

2. Theoretical Framework

The few-particle system analyzed in the present work is shown in Fig. (1).

Two electrons released by two on-axis shallow donor impurities are trapped in-

side of two parallel Ga1−xAlxAs toroidal nanorings with radii R1 (lower toroid)75

and R2 (upper toroid), both with identical cross-section areas equal to πRt
2.

The two-toroid system is in presence of a growth-direction magnetic field ~B

(z-direction), being d the interplanar separation between the toroids. In order to

ease the analysis and focus the attention on the structure-structure interaction,

it was consider an insulating material matrix with the same elastic properties80

and static permittivity of the QRs’ material. The positions of the impurities

in the insulating matrix are defined by ~ξ1 = (0, 0,−ξ1) and ~ξ2 = (0, 0, ξ2).

Additionally, an applied hydrostatic pressure field P is applied on the over-

all system. Since the changes of hydrostatic pressure, aluminum concentration

and temperature have an important incidence on the electron’s effective mass85

m∗(P, x, T ), the static permittivity ε(P, T ), and particularly the hydrostatic

pressure on the structural dimensions of the system [19, 20, 21], we have defined

a set of effective units at standard conditions (P = 0, x = 0, and T = 4 K)
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Figure 1: Schematic model of the two-hydrogenic Ga1−xAlxAs VCQRs under the presence

of a magnetic field and hydrostatic pressure.

to scale the P , x, T -dependent system Hamiltonian, these are the effective

Bohr radius a∗0 = h̄2(4πε(0,4))
m∗(0,0,4)e2 , the effective Rydberg Ry∗ = m∗(0,0,4)e4

2h̄2(4πε(0,4))2
, and90

γ = h̄eB
2m∗(0,0,4)cRy∗ , as units of length, energy, and dimensionless magnetic field

strength, respectively. Within the framework of the effective-mass approxima-

tion, the dimensionless system Hamiltonian in cylindrical coordinates can be

written as:

Ĥ =

2∑
j=1

Ĥ0(~rj) +
2

σ(P, T )|~r2 − ~r1|
+

2

σ(P, T )|~ξ2 − ~ξ1|
(1a)

Ĥ0(~rj) = −[
1

ρj

∂

∂ρj

( ρj
µ(P, x, T )

) ∂

∂ρj
+

1

µ(P, x, T )ρ2
j

∂2

∂ϕ2
j

+
∂

∂zj

( 1

µ(P, x, T )

) ∂

∂zj
]

− iγ

µ(P, x, T )

∂

∂ϕj
+

γ2ρ2
j

4µ(P, x, T )
+

2∑
k=1

2

σ(P, T )|~rj − ~ξk|
+ Vj(~rj)

(1b)

where the dimensionless scalar functions σ(P, t) = ε(P, T )/ε(0, 4) and µ(P, x, T ) =95
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m∗(P, x, T )/m∗(0, 0, 4) describe the static permittivity and electron’s effective

mass dependency on the (P, x, T ) values, repectively. The first term in Eq.

(1a) corresponds to the one-electron hamiltonian (see Eq. (1b)) containing the

kinetic energy operator (first term between brackets), the magnetic couplings

(second and third terms), the electron-impurities interactions (fourth term) and100

the quantum confinement Vj(~rj) due to the energy gap difference between the

materials (assumed to be zero inside the toroids walls and infinity in the insulat-

ing matrix). The second and third terms in Eq. (1a) are related to the electron-

electron and impurity-impurity Coulomb interactions, respectively. According

to Refs. [19, 20, 21] the P , x, T -dependent electron’s effective mass m∗(P, x, T )105

in the Ga1−xAlxAs QRs can be written as follows:

m∗(P, x, T ) = m0

[
1 + δ(x) +

Π2(x)

3

( 2

EΓ
g (P, x, T )

+
1

EΓ
g (P, x, T ) + ∆0(x)

)]−1

(2a)

EΓ
g (P, x, T ) = aΓ + bΓx+ cΓx

2 + αΓP − βΓT
2(γΓ + T )−1 (2b)

being m0 the free electron mass, Π2(x) the square of the interband matrix

element describing the coupling between the s states of the conduction band with

the hybrid sp-valence states, ∆0(x) the split-off valence gap, and EΓ
g the energy

gap. The remote-band effects are considered into the δ(x) term. The explicit

form of all the previous quantities and the fitting constants were extracted from

Refs. [19, 20, 21]. The static permittivity dependent on the hydrostatic pressure

and temperature ε(P, t) is given by Ref. [20]:

ε(P, T ) = κ1(T )eκ2(T )T−κ3(T )P (3)

where the κ1(T ), κ2(T ), and κ3(T ) fitting parameters depend on the current

temperature of the system [20]. The effect of the hydrostatic pressure field

on the two-toroid structure is reflected in the dependence of the geometrical

parameters (toroids cross-section areas πRt
2 and the toroids radii R1 and R2),110

the interplanar toroid-toroid separation d, and the impurity positions (ξ1 and
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ξ2) on the hydrostatic pressure strength P . We have assumed those functional

dependencies from Ref. [21]:

ξj(P )

ξj(0)
= [1− (S11 + 2S12P )] (4a)

Rj(P )

Rj(0)
= [1− 2(S11 + 2S12P )]1/2 (4b)

where S11 and S12 are the compliance constants. The Eqs.(4a-4b) describe

the axial and radial dimensional reduction percentage due to the applied hydro-115

static pressure.

The Hamiltonian (1a) it is not exactly solvable, but bearing in mind the

experimental fact that self-assembled quantum rings have a small height-to-

base aspect ratio [22], it is possible to solve it by using the well-known adiabatic

procedure [23, 24]. The method begins by finding from Eq. (1a) the numerical120

two-electron ground-state wave function fϕ1(~r1)fϕ2(~r2) and its corresponding

energy Eadiab(ϕ1, ϕ2) for fixed values of ϕ1, ϕ2. Reintroducing the adiabatic

energy Eadiab leads to the following ϕ1,ϕ2-dependent eigenvalue problem:

Ĥa =

2∑
j=1

[− 1

µ(x, P, T )

∂2

∂ϕ2
j

− iγ

µ(x, P, T )

∂

∂ϕj
+

γ2Aj(ϕj)

4µ(x, P, T )
] + Eadiab

+Vee(ϕ2 − ϕ1) +

2∑
j=1

2∑
k=1

Vej ,ik +
2

σ(P, T )|~ξ2 − ~ξ1|

(5a)

Aj(ϕj) =

∫
CS

|ρj fϕj (~rj)|2dSj (5b)

Vee(ϕ2 − ϕ1) =
2

σ(P, T )

∫
CS

|fϕ1
(~r1)fϕ2

(~r2)|2

|~r2 − ~r1|
dS1dS2 (5c)

Vej ,ik =
−2

σ(P, T )

∫
CS

|fϕ1
(~r1)fϕ2

(~r2)|2

|~rj − ~ξk|
dS1dS2 (5d)

The (5c) and (5d) terms represent the electron-electron and electron-impurities

mean-potentials integrated over the toroids cross-section (CS) and dependent125
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only on ϕ1 and ϕ2 (the slow rotational motion has been decoupled from the

fast transverse motion). Futhermore, the two-electron dynamics can be de-

scribed more properly by using the center-of-mass Θ =
R2

1ϕ1+R2
2ϕ2

R2
1+R2

2
and relative

ϕ = ϕ2 − ϕ1 coordinates, since the adiabatic Hamiltonian can be rewritten

as Ĥa = ĤΘ + ĤΦ, where the center-of-mass and relative operators estab-130

lish the eigenvalue equations, ĤΘΨM (Θ) = EΘ(M)ΨM (Θ) and ĤΦΦm,s(ϕ) =

EΦ(m, s)Φm,s(ϕ), respectively. The first equation with Hamiltonian ĤΘ can

be solved exactly, whilst the another one was solved numerically by using a

diagonalization matrix scheme [25] with periodic boundary conditions in the

region [−2π, 2π] defined by the expression Φm,s(ϕ) = (−1)MΦm,s(ϕ± 2π). The135

quantum numbers M = 0,±1,±2, ... and m = 0,±1,±2, ... denote the center-

of-mass angular momentum and the two-electron relative angular momentum,

respectively. On the other hand, s = + denotes even solutions or singlet states,

whilst s = − denotes odd solutions or triplet states.

3. Results and Discussion140

3.1. Results validation

With the aim of establishing the quality of our numerical procedure, we

have calculated the eigenergies from Eq. (1a) multiplied by R2
1 (also known as

renormalized eigenergies) in order to compare them with the results obtained

by Zhu and co-workers [26], who calculated exactly the eigenstates and renor-145

malized eigenergies of two electrons hardly confined in a GaAs one-dimensional

quantum ring.

In Table 1, is displayed the renormalized eigenergies of a two-hydrogenic

VCQR system at zero magnetic field in the following limit conditions, equal

mean radii (R1 = R2), cross-section radii equal to 0.001 a∗0, ring-ring separation150

of 0.002 a∗0, and with the impurities located far away from the origin at the

positions ξ1 = ξ2 = 10000 a∗0. In such limit conditions, our two-hydrogenic

VCQR behaves similarly to the two-electron system hardly confined studied in

Ref. [26]. The results are organized as follows, in the first column is placed the

8



Table 1: Comparison between the set of renormalized eigenenergies of a two-hydrogenic VC-

QRs system in limit conditions (present work) and those obtained by Ref. [26].

State (0,0,0) (1,1,1) (2,2,0)

Radius 1 a∗
0 4 a∗

0 20 a∗
0 1 a∗

0 4 a∗
0 20 a∗

0 1 a∗
0 4 a∗

0 20 a∗
0

P

30 kbar 1.74334 5.42441 23.83662 2.16474 5.84650 24.25877 7.51071 12.76754 35.75066

15 kbar 1.73330 5.29618 23.08026 2.18992 5.75351 23.53769 7.90329 13.03544 35.46388

10 kbar 1.73126 5.24653 22.58104 2.20116 5.71712 23.05175 8.05366 13.13630 35.14318

1 kbar 1.73221 5.19075 22.42068 2.22828 5.68748 22.91757 8.35622 13.37911 35.33673

0.1 kbar 1.73182 5.17439 22.12777 2.23070 5.67392 22.62745 8.38811 13.39476 35.08173

Ref. [26] 1.73248 5.18378 22.37530 2.23167 5.68362 22.87530 8.39238 13.40774 35.33351

T

400 K 1.74115 5.06550 21.58679 2.29911 5.62385 22.14544 9.07863 13.95939 35.32773

200 K 1.73245 5.13070 22.04273 2.25230 5.65112 22.56336 8.62941 13.58712 35.27014

40 K 1.72982 5.17049 22.30745 2.23032 5.67163 22.80875 8.40337 13.40530 35.27316

10 K 1.73189 5.18137 22.36362 2.23115 5.68128 22.8637 8.39238 13.40533 35.32069

6 K 1.73228 5.18297 22.37139 2.23148 5.68282 22.87141 8.39229 13.40683 35.32909

Ref. [26] 1.73248 5.18378 22.37530 2.23167 5.68362 22.87530 8.39238 13.40774 35.33351

Alx

0.4 1.55557 4.94106 21.92085 1.89260 5.27862 22.25844 6.24830 11.02882 31.96288

0.3 1.58535 4.98330 22.00128 1.94903 5.34757 22.36560 6.60319 11.42982 32.54519

0.1 1.67288 5.10406 22.22812 2.11650 5.54837 22.67252 7.66146 12.60714 34.22062

0.01 1.72536 5.16511 22.10754 2.21846 5.65887 22.60145 8.31185 13.31055 34.96138

Ref. [26] 1.73248 5.18378 22.37530 2.23167 5.68362 22.87530 8.39238 13.40774 35.33351

different values of hydrostatic pressure, temperature and aluminum concentra-155

tion used to calculate the corresponding renormalized energies for three different

radii 1 a∗0, 4 a∗0, and 20 a∗0 (labeled in the second row of the table). This calcula-

tion was performed for the ground state (0, 0, 0) (columns two to four) and the

excited states (1, 1, 1) (columns five to seven) and (2, 2, 0) (columns eight to ten).

For instance, by decreasing the hydrostatic pressure strength from 30 kbar to160

0.1 kbar, one can see that our renormalized eigenenergies in the three quantum

states independently of the radius value (e.g. from the smaller to the bigger one)

tend to the renormalized energies calculated by Ref. [26] (eighth shaded row).
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Additionally, as the temperature and the aluminum concentration decreases

from 400 K to 6 K, and 0.4 to 0.01, respectively, the renormalized energies also165

tend to the values calculated by Zhu [26] (shaded rows). This correct tendency

was expected since the effective atomic units used by Zhu correspond to GaAs

materials (Alx = 0) at 4 K, and at zero hydrostatic pressure field. This fact can

be interpreted as an indirect quality proof of our numerical procedure obtained

with the two-hydrogenic VCQRs model giving an account of the results obtained170

for similar systems which could be conceived as particular cases of the model

proposed in the present work. It is necessary to emphasize that the convergence

to the Ref. [26] values in some cases is strictly non-monotonous, for instance in

state (2, 2, 0) and radius 20 a∗0, the corresponding renormalized eigenenergies to

the hydrostatic pressure values of 10, 1 and 0.1 kbar are 35.14318, 35.33673, and175

35.08173 Ry∗a∗0
2. This fact obeys to the complex interplay among the terms of

the system Hamiltonian in Eqs. (1a) and (1b) due to the hydrostatic pressure,

temperature, and Alx concentration. The (P ,x,T ) interplay in association with

the two-toroid geometric variations and external fields is subject of study in the

subsequent sections.180

3.2. Effect of the hydrostatic pressure

In order to discuss and visualize adequately our numerical results for the

states (M,m, s), throughout this contribution, we will analyze the ground state

(0, 0, 0) and the excited states (±1, 1, 0), (±2, 2, 0), (±1, 3, 0). This set of states

will give us a general idea of the system’s behavior and will make clear the185

interpretation avoiding the multiple curves overcrossing. In Fig. (2) it is dis-

played the renormalized energy for some low-lying levels as a function of the

lower ring radius R1 for different hydrostatic pressure values 0, 15 and 30 kbar.

The aluminum concentration Alx and the magnetic field strength are fixed to

zero, the ring-ring separation is 1 a∗0, the on-axis donor-donor distance is 2 a∗0,190

and the temperature of the sample is set to 4 K.

At a first glance, the renormalized energy values for the shown low-lying

levels can be reduced by increasing the hydrostatic pressure field strength within
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-80
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-40
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0
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 0 
 15 kbar
 30 kbar

(±2,2,0)

(±1,1,0)(0,0,0)
a*

0

d = 1 a*
0

R2 = 1 a*
0

T = 4 K
Alx = 0
B = 0

E(
Ry

 a
* 02 )

R1(a
*
0)

(±1,3,0)

Gas-like Crystal-like

Figure 2: Renormalized energy as a function of R1 for different values of the hydrostatic

pressure. The arrow depicts that for large values of R1, the two-hydrogenic VCQRs evolves

from a gas-like to a crystal-like system.

the range 0 − 30 kbar, being this an indicator that in general the hydrostatic

pressure increases the two-hydrogenic complex stability. This behavior is linked195

mainly to the direct relation between the effective mass and the hydrostatic

pressure in Eq.(2a), since for greater values of the hydrostatic pressure, the

electron mobility decreases as a consequence of the increment of its effective

mass. In particular, the levels (0, 0, 0) and (±1, 1, 0) are of special interest since

they are bounded states due to the negative energy values, which is desirable in200

diverse technological applications. Also, it can be seen that the ground state is

the least sensitive to hydrostatic pressure changes.

In addition, it can be seen that for R1 values smaller than 6 a∗0 the eigenen-

ergies undergoes drastic changes in the slope curve, and on the contrary, for

greater values than 6 a∗0, the slopes tend to a quasi-constant behavior indicat-205

ing a transition from a disordered system similar to a gas-like configuration to

a ordered one with the features of a rigid rotor. This fact is easily to explain

thorough a one-dimensional models [17] which predicts that for large R1 val-
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ues the renormalized kinectic energy tend to be independent on the ring radii

and the renormalized potential energy tends to be proportional to R1. A simi-210

lar phenomenon has been seen before for the case of two electrons in quantum

rings [17] and lenses [11], and it can be interpreted as a two-particle Wigner

crystallization.

It is necessary to emphasize that the R1 value in which the transition from

a gas-like to a crystal-like system is given, may vary depending on the state and215

the external fields applied. For instance, in Fig.2, it was drawn perpendicularity

symbols on the curves of the state (±1, 3, 0) at the points R1 = 4.85, 5.37 and

6 a∗0 corresponding to the hydrostatic pressure values of 0, 15 and 30 kbar, re-

spectively. The perpendicularity symbols try to evince a tendency of the curves

slope to behave quasi-constantly for greater values than those in which the220

perperdicularity symbols are drawn, so in this sense, the previously mentioned

values of R1 can be considered as gas-to-crystal transition points for each cor-

responding hydrostatic pressure considered. In other words, for this particular

state, it can be infered that if the hydrostatic pressure is increased, larger val-

ues of R1 are required in order to obtain the two-particle Wigner crystallization.225

The transition points for the other states at the different hydrostatic pressure

conditions can be easily read by examining the quasi-constant behavior of the

curves slopes.

3.3. Effect of the sample temperature

In Fig. 3 is displayed the renormalized energy as a function of R1 for values230

of the sample temperature equal to 4, 200K and, 400K. Within the range

of 1 and 10 a∗0 for R1, the energy levels of the analyzed states raise as the

temperature of the sample is increased, being this effect more noticeable in

excited states and in configurations with larger R1 radius. This response was

expected and linked mainly to the inverse variation between the effective mass235

and the temperature in Eq.(2a), since for greater values of the temperature,

the electron mobility increases as a consequence of the reduction of its effective

mass. For instance, the renormalized energy variations for a symmetric two-
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hydrogenic VCQRs configuration with equal radii R1 = R2 = 1 a∗0, are of the

order of units of Rydberg for excited states and tenths of Rydberg for the ground240

state case.

1 2 3 4 5 6 7 8 9 10
-100
-80
-60
-40
-20

0
20
40
60
80

100
 4 K
 200 K
 400 K

(±1,3,0)
(±2,2,0)

(±1,1,0)(0,0,0)
a*

0

d = 1 a*
0

R2 = 1 a*
0

E(
Ry

 a
* 02 )

R1(a
*
0)

P = 0 
Alx = 0
B = 0

Gas-like Crystal-like

Figure 3: Renormalized energy as a function of R1 for different values of the sample temper-

ature.

On the other hand, the two-particle Wigner crystallization transition points

for the state (±1, 3, 0) are R1 = 4.86, 5.15 and 5.69 a∗0 (see the perperdicularity

symbols on the curves for the corresponding values of T = 400, 200, and 4 K,

respectively). Consequently, for this particular state it can be inferred that the245

greater the temperature is the smaller the values of the transition points R1 are.

3.4. Effect of the Aluminum concentration

In Fig. 4 is plotted the renormalized energy as a function of R1 for Aluminum

concentration values of 0, 0.3, and, 0.4. It can be appreciated a general behavior

of the analyzed energy levels which decreases as the Aluminum concentration250

increases within the range of R1 from 1 to 10 a∗0. The renormalized energy

changes are small in the ground state in comparison with those for excited states,

which is in accordance with the discussion in the previous sections. Nevertheless,
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by varying the aluminum concentration from 0 to 0.4, one can obtain more

drastic changes in the renormalized energy spectrum (specially in excited sates)255

in comparison with those obtained by varying the hydrostatic pressure from 0

to 15 kbar (see Fig. 2) or the temperature from 4 K to 400 K (see Fig. 3).

Consequently, it is possible to state that the predominant variable among the

sample temperature, the hydrostatic pressure and the aluminum concentration

in a two-hydrogenic VCQRs system is the aluminum concentration, since can260

affect drastically the electron mobility due to the significant increase in effective

mass.

Figure 4: Renormalized energy as a function of R1 for different values of the aluminum

concentration.

The transition points for the state (±1, 3, 0) in which the Wigner crystal-

lization takes place on the curves with Alx = 0, 0.3, and 0.4 are respectively

R1 = 4.84, 5.9, and 6.66 a∗0. Similarly such as the case with hydrostatic pressure,265

here the greater the values of Alx are the greater the values of R1 (transition

points) are.

All the results discussed in the previous subsections clearly show that the

hydrostatic pressure, the sample temperature and aluminum concentration have

a strong influence on the two-hydrogenic VCQRs level ordering and on its geom-270
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etry. Nevertheless, the presence of a magnetic field and the inter-ring distance

affects significantly the energy level ordering as it is shown in the following

subsection.

4. Effects on the magnetic field and inter-ring distance

In Fig. 5 is displayed the total energy as a function of the inter-ring distance275

for a two-hydrogenic VCQRs system with equal radii (1 a∗0) and with their

donors placed at ξ1 = ξ2 = 1 a∗0 and for the three different values of renormalized

magnetic field γ = 0 (solid lines), 0.1 (dashed lines), and 0.5 (dotted lines). In

the left (right) panel are displayed the energies of the four states previously

analyzed with M > 0 (M < 0). It can be seen a general behavior of the280

energy levels when the rings begin to be separated starting from 0.01 a∗0 to 2 a∗0.

As expected the all energy levels become to decrease as a consequence of the

electron-electron term weakening but a minimum is reached at d = 1 a∗0 just

when one of the rings is directly in front of one of the donors which provides

the maximum stability that is feasible to obtain with this configuration since285

maximizes the approaching among positive and negative charged carriers.
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Figure 5: Renormalized energy as a function of the inter-ring distance for different values of

the magnetic field strength.

In addition in Fig.5 can be seen two contrary effects by increasing the renor-
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malized magnetic field intensity. In the left (right) panel the energy levels

decrease (increase) as the the γ parameter is increased. This is a consequence

of the paramagnetic term of the system Hamiltonian (5a) whose contribution to290

the total energy is of the form −Mγ, making the energy smaller (greater) when

values of the quantum angular momentum M > 0 (M < 0) are taken.

5. Molecular features of the two-hydrogenic nanorings
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Figure 6: Total energy as a function of the donor-donor distance for different ring-ring dis-

tances. In all panels the black, red and blue curves correspond to a ring- ring distance equal

to d = 1,4, and 8 a∗0 and the rings have equal radii R1 = R2 = 1 a∗0.

In Fig. 6 is displayed the ground state energy of the two-hydrogenic VCQRs

system as a function of the donor-donor separation. In all panelsthe total energy295
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is displayed for three different values of inter-ring distance d = 1 a∗0 (black lines),

4 a∗0 (red lines), and 8 a∗0 (blue lines). In the upper panel we vary the hydrostatic

pressure thorough the values P = 0 (solid lines), 15 (dashed lines), and 30 kbar

(dashed lines). In the middle panel the temperature is varied thorough the

values T = 4 (solid lines), 200 (dashed lines), and 400 K (dashed lines). In the300

lower panel, the aluminum concentration is varied thorough the values Alx = 0

(solid lines), 0.2 (dashed lines), and 0.4 (dashed lines).

At first glance, it is evident the close similarity with the curves of the molec-

ular energy of a natural two-hydrogen molecule H2. But unlike the natural

molecule case, in our system by varying the inter-ring distance, it is possible305

to modify substantially the equilibrium length of the artificial molecule. In

addition, by varying the hydrostatic pressure, temperature and aluminum con-

centration, it is possible to vary slightly the dissociation energy, making the

molecule more stable if the hidrostatic pressure or the aluminum concentration

is increased, and in the contrary, making the molecule more unstable if the310

temperature is increased. It is important to notice that the variations with the

aluminum concentration are very small, even not noticeable in the curves with

d = 4 and 8 a∗0. For this reason, an inset in the lower panel was added to show

the variations of the order of tenths of thousandths with the Alx.

Finally, there is a mechanism to modify more significantly the dissociation315

energy thorough geometrical changes such as the ring radii. the olive and orange

curves were plotted for the inter-ring distance d = 4 a∗0. The orange curve (small

radii) is related to an more stable molecule due to the greater approaching

between the electrons to the on-axis donors, while the dotted orange curve

(large radii) defines a more unstable molecule by the opposite reason in the first320

case.

6. Conclusions

The simultaneous effects of hydrostatic pressure, aluminum concentration

and sample temperature on the quantum levels of a two-hydrogenic VCQRs

17



under the presence of a uniform magnetic field were analyzed. The proposed325

adiabatic-based model is versatile enough to be compared with systems with

different dimensionality such as two-electron one-dimensional quantum rings.

The impact of this fact lies in the possibility of establishing successful qualitative

comparisons with non-trivial systems with exact solutions. It was shown that

the analyzed two-hydrogenic VCQRs energy levels are declined by an increase330

in hydrostatic pressure or aluminum concentration in the range of 0 − 15 kbar

and 0− 0.4, respectively, while the energy levels are raised by an increase of the

temperature sample in the range of 4− 400K. By comparing these three effects

one can conclude that the most drastic changes can be obtained by varying

the aluminum concentration within the range 0− 0.4. These physical variables335

in association with the two-hydrogenic VCQRs geometry can be manipulated

with the purposes of modifying the level ordering affecting the dynamics of the

charge carriers (favoring or disfavoring crystallization Wigner-like process) for

technological purposes.
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[11] R. Manjarres-Garćıa, G. E. Escorcia-Salas, J. Manjarres-Torres, I. D.

Mikhailov, , J. Sierra-Ortega, Double-donor complex in vertically coupled

quantum dots in a threading magnetic field, Nanoscale Research Letters 7

(2012) 1. doi:https://doi.org/10.1186/1556-276X-7-531.400

[12] L.-X. Zhai, Y. Wang, Z. An, Excitons and trions in single and vertically

coupled quantum dots under an electric field, Physics Letters A 381 (2017)

2412–2419. doi:https://doi.org/10.1016/j.physleta.2017.05.017.

[13] V. Stavrou, Light effects in asymmetric vertically coupled InAs/GaAs quan-

tum dots, Physica B 479 (2015) 6–9. doi:http://dx.doi.org/10.1016/405

j.physb.2015.09.024.

20

http://dx.doi.org/10.1038/NMAT3585
http://dx.doi.org/10.1007/s10472-016-9505-y
http://dx.doi.org/10.1007/s10472-016-9505-y
http://dx.doi.org/10.1007/s10472-016-9505-y
http://dx.doi.org/10.1007/s10472-016-9505-y
http://dx.doi.org/10.1007/s10472-016-9505-y
http://dx.doi.org/10.1007/s10472-016-9505-y
http://dx.doi.org/10.1007/s10472-016-9505-y
http://dx.doi.org/https://doi.org/10.1186/1556-276X-7-531
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2017.05.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.physb.2015.09.024
http://dx.doi.org/http://dx.doi.org/10.1016/j.physb.2015.09.024
http://dx.doi.org/http://dx.doi.org/10.1016/j.physb.2015.09.024


[14] Y. Li, Magnetization and magnetic susceptibility in nanoscale ver-

tically coupled semiconductor quantum rings, Journal of Computa-

tional Electronics 4 (2005) 135–138. doi:https://doi.org/10.1007/

s10825-005-7124-7.410

[15] C. B. J. Fernández P, L. Jaimes Osorio, Energy levels of on-axis donors

in vertically stacked quantum dots with different morphologies, Microelec-

tronics Journal 39 (2008) 1259–1260. doi:10.1016/j.mejo.2008.01.008.
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